

Title: Linkable Attribute-based Signature

Author: Héctor Masip Ardévol

Advisor: Paz Morillo Bosch and Ramiro Martínez Pinilla

Department: Mathematics

Academic year: 2019-2020

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Universitat Politècnica de Catalunya
Facultat de Matemàtiques i Estadística

Master in Advanced Mathematics and Mathematical Engineering
Master’s thesis

Linkable Attribute-based Signature
Héctor Masip Ardévol

Supervised by Paz Morillo Bosch and Ramiro Martínez Pinilla
September, 2020

Primer que res agraeixo a la Paz i al Ramiro per tota la seva ajuda i paciència en aquesta tesi,
sobretot en els períodes en els quals, carinyosament, els massacrava a preguntes (algunes d’elles
bastant ”negligibles”). També m’agradaria reconèixer l’esforç de tots aquells mestres que han fet
possible que en converteixi en la persona que sóc ara. En particular, dono les gràcies a Mamen per
motivar-me a descobrir el meravellós món de les matemàtiques i a Diego, perquè, encara que no
dominés l’idioma en el qual havia d’impartir l’assignatura, em va saber transmetre la seva passió per
la criptografia (enganxant-me a ella).

Fora d’aquest món acadèmic, vull agrair a tots els amics, companys i ”haters” per ensenyar-
me tots els valors morals i socials que m’han permès desenvolupar-me en aquest món que tanta
incertesa en causa a tots. Especialment valoro a Marta el suport que m’ha mostrat durant tota la
tesi, sobretot quan em feia espavilar en escoltar coses del tipus ”això és massa difícil, no entenc
res de res, crec que me’n vaig a estudiar una altra carrera” o ”vaja xorrada que em fan estudiar,
prefereixo suspendre a estudiar-me això”.

Per últim, i no menys important, voldria reconèixer l’esforç dels meus pares i la valentia del meu
germà per ensenyar-me tot el que no es pot aprendre al cole, per dirigir-me en els moments difícils,
per ajudar-me en qualsevol àmbit i per posar-me al lloc quan així ho requeria la situació. Tot això
i més m’ha fet possible (en un temps rècord) arribar on estic ara i també ha aconseguit modelar
aquesta personalitat de la qual tant gaudeixo.

Dedico tot aquest esforç a ma mare Isabel i al meu padrí Àngel, A.C.S.

Abstract
Attribute-based signatures, as introduced by Maji et al. [MPR11] allow to generate anonymously a
signature for a message on behalf of a signing policy. To sign a message, a private attribute that
satisfies the signing policy has to be used. It is furthermore not possible to identify the actual signer
based on the signature. Attribute-based signatures have some important properties for electronic
voting, e.g., it guarantees that a vote has been submitted by an eligible voter without revealing her
identity. To be fully applicable in that setting, attribute-based signatures must allow not only to
determine when some signatures have been emitted by the same person, but also it has to easily
detect when the signatures have been issued by different persons.

In this thesis, we solve the aforementioned problems by constructing a linkable attribute-based
signature (LABS) scheme for unbounded circuits in the random oracle model. We start by providing
a generic construction of LABS schemes, where we define both the linkability and exculpability
properties. We also provide a concrete instantiation of our generic LABS construction from protocols
based on lattices. We do it by introducing a new zero-knowledge proof of knowledge for proving
possession of a valid signature of the lattice-based signature scheme of Boschini et al. [Bos+20].

Keywords

cryptography, lattice, post-quantum cryptography, e-voting, digital signature scheme, attribute-
based signature

1

Contents

1 Introduction 3
1.1 Electronic voting structure and goals . 4
1.2 Quantum computing . 5
1.3 Thesis structure . 7

2 Preliminaries 8
2.1 Notation . 8
2.2 Cryptographic primitives . 9

2.2.1 Trapdoor functions . 9
2.2.2 Commitment schemes . 10
2.2.3 Digital signatures . 11

2.3 Zero-knowledge proofs . 12
2.4 Lattices . 16

2.4.1 Introduction to lattices . 16
2.4.2 Lattice problems . 18
2.4.3 Ideal lattices . 20
2.4.4 Trapdoors from lattices . 22
2.4.5 R-LWE based commitment scheme . 24
2.4.6 R-SIS based signature scheme . 29

3 Voting process 32
3.1 Digital signatures literature . 32
3.2 Linkable attribute-based signature scheme . 33

4 Generic LABS scheme 39
4.1 Construction . 40
4.2 Security analysis . 42

5 LABS for unbounded circuits from lattices 45
5.1 Preparing tools . 45
5.2 ZKPoK for the LABS relation . 52

6 Conclusions 55

1. Introduction
“There are three kinds of cryptography in this world: cryptography that will stop your
mother from reading your files, cryptography that will stop governments from reading
your files and cryptography that makes you fall in love.”

Historically, the term “cryptography” has been associated with the problem of designing and
analyzing encryption schemes (i.e., schemes that provide secret communication over insecure com-
munication media). However, since the 1970s, problems such as constructing unforgeable digital
signatures and designing fault-tolerant protocols have also been considered as falling within the
domain of cryptography.

Modern cryptography is concerned with the construction of schemes that should be able to
withstand any abuse. Such schemes are constructed so as to maintain a desired functionality, even
under malicious attempts aimed at making them deviate from their prescribed functionality.

Solving a cryptographic problem (or addressing a security con-
cern) is a two-stage process consisting of a definitional stage and
a constructive stage. First, in the definitional stage, the func-
tionality underlying the natural concern must be identified and an
adequate cryptographic problem must be defined. Trying to list all
undesired situations is infeasible and prone to error. Instead, one
should define the functionality in terms of operation in an imagi-
nary ideal model and then require a candidate solution to emulate
this operation in the real, clearly defined model (which will specify
the adversary’s abilities). Once the definitional stage is completed,
one proceeds to construct a system that will satisfy the definition.
Such a construction may use some simpler tools, and its security
is to be proved relying on the features of these tools. (In practice,
of course, such a scheme also may need to satisfy some specific
efficiency requirements.)

Security of cryptographic protocols strongly rely on mathematical theory and computer science;
these protocols are designed around computational hardness assumptions. It is theoretically possible
to break such a protocol, but the strength comes from the fact that it is infeasible to do so by
any practical means. Most of the actual popular systems rely on two well-known mathematical
problems: the discrete logarithm and the integer factorization. However, these problems can be
efficiently solved on a sufficiently powerful quantum computer by running Shor’s algorithm [Sho99]1.
Even if a long-living quantum computer is far from being a reality, one should not avoid this possibility
in the design and implementation of new cryptographic tools.

The main objective of this thesis is to construct new cryptographic protocols useful for electronic
voting and prove its consistency and security against a quantum adversary. Specifically, our tool will
provide voters with the ability of voting without using directly their identity, while at the same time
every observer (from inside or outside the election process) will be able to distinguish between her
casted vote and a different one. Additionally, everyone will have the possibility to check that all the
votes have been cast by someone who had the right to vote.

1This algorithm works well for the general case of these problems, but one should use [PZ03] instead for the elliptic
case.

3

1.1 Electronic voting structure and goals
Societies have conducted elections for thousands of years, but technologies used to cast and tally
votes have varied and evolved tremendously over that time. In 2020 much of our communication
takes place online, and many people want elections to follow this trend. Electronic voting offers
several advantages over traditional elections. It needs less infrastructure, it is less expensive, it
obtains faster the final results, it is more flexible and it considerably simplifies the voting procedure
for electors that are abroad at the time of the election.

An ideal Internet voting election process consists in the following phases:

(1) SETUP. During the setup phase, election officials gather information needed to run the
election. This includes:

• gathering registration information for all voters;
• identifying the issues and races that will be voted on;
• designing ballots, often in multiple languages, for all precincts participating in the election;
• sending instructions and other information about the election.

(2) DISTRIBUTION. Different voting systems use different mechanisms to distribute ballots to
vote, such as postal mail, email, or a website that provides downloadable ballots.

(3) VOTING. Voters fill out their ballots, often with the help of software installed on their own
devices.

(4) CASTING. Election officials receive the completed ballots as a previous step to perform the
tallying. As with distribution, different voting systems use different ballot casting mechanisms.

(5) TALLYING. The tallying phase includes the remainder of the tasks that finalize the election.
Counting votes and announcing the election outcome are common to almost every election
system, though some include other tasks such as publishing information needed for audits.

(6) AUDITING. Some elections will inevitably be disputed. In such cases, there is a final phase
in which interested parties look for evidences that the election outcome is correct.

As much as possible, Internet voting should be private and anonymous. It is essential that voters
are free to vote the way they choose, and do not feel pressured to vote for a particular candidate
or vote a particular way on any issue (coercion resistance). The fewer people who know or can find
out how a voter voted, the more comfortable the voter can feel about privacy.

There are some typical properties that an electronic voting scheme must satisfy, such as usability
and accessibility. The first one deals with the interface of the whole process and the second one is
more concerned about expanding the amount of people that is able to vote. Even if in this thesis
we will not be directly concerned about this kind of features, one typically have to have in mind if
her protocols could be used for further research or for real-world applications.

It is also essential that the voter has access to a proof of her vote before the casting phase, so
that she can check that her vote has not been modified or erased. However, she must not be able
to show to a third party what she has voted; in order to avoid vote-selling. This is a key part in
the comparison between an electronic voting process and a traditional one. When you vote in a
traditional election there is no mechanism that allow you to re-vote or even to tell to you which of
the envelopes is yours without breaking the anonymity. In the electronic version, this problem can
be easily handled with the combination of an encryption scheme (voters “introduce” their votes in

4

an envelope) and a digital signature scheme. In Section 3.2 we introduce an improved version of a
digital signature scheme, in the sense that it will attest not to the identity the individual who signed
a message while at the same time we will be able to identify if different votes have been produced
by the same person.

Figure 1: A ballot making machine tested by Microsoft in 2019.

Typically, a ballot is encrypted with a public key (which is known by everyone since the very
beginning of the voting phase) and then decrypted with a private key. A natural question is to ask
who is the trusted party that will hold the private key during the voting and the casting phases
and then will decrypt the ballots to perform the tallying. To avoid dealing with this question, a
(threshold) secret sharing system is introduced in the process. In this protocol, the private key is
shared among n parties (which are assumed to have non-common interests). Each of these parties
can compute a part of the decryption key, but at least t of them are needed to recover the message
(t ≤ n). The value t is called the threshold value, and is useful to ensure that the decryption will
be possible even if a small amount of parties are dishonest.

An ideal election scheme that fulfills all the requirements consists of several parties and protocols
and is still an actual research topic. The protocols presented in this thesis are intended to be key
pieces of any flexible e-voting scheme.

1.2 Quantum computing
A classical computer processes the input data sequentially in order to solve a problem. Turing
machines or logical circuits can be used to model classical computation. A Boolean circuit is made
up of elementary gates and performs a computational task, where input bits are transformed into
output bits. In each step, the system has a fixed state and, depending on the complexity of an
algorithm and the size of the input data, the computation can be inefficient or infeasible: suppose
that f is a vectorial Boolean function and an algorithm iterates over all x ∈ {0, 1}n until f (x) is
equal to a fixed value y . The worst-case running time is exponential in n and the algorithm is
inefficient on conventional computers, even if the individual computations of f (x) run very fast.

Quantum computers can compute all 2n values f(x) simultaneously. This sounds fantastic, but
there is a catch: the computation requires a system of n qubits, the internal state is inaccessible
and only a single output value can be extracted from a quantum system.

Quantum computing uses quantum circuits instead of Boolean circuits, and quantum algorithms
take qubits (quantum bits) instead of classical bits as input. A qubit can assume infinitely many
states between 0 and 1; the state is represented by a normalized vector in the vector space C2. We

5

fix an orthonormal basis of C2, for example the standard basis e1 = (1, 0) and e2 = (0, 1), and
denote the basis states by |0〉 and |1〉.

Definition 1.1. The Dirac or ket notation of a vector ψ in the state space is |ψ〉. The state of a
qubit |ψ〉 is a superposition (linear combination) of the basis states |0〉 and |1〉:

|ψ〉 = a|0〉+ b|1〉, where a, b ∈ C and |a|2 + |b|2 = 1

The coefficients of |0〉 and |1〉 can be interpreted as probabilities, and a qubit as a random
variable. A measurement (observation) changes the state of a qubit and yields a classical bit, i.e.,
either 0 or 1. The state of a qubit determines the probability of the result of a measurement: the
probability of 0 is |a|2 and the probability of 1 is |b|2. Thus the quantum information (a and b) is
hidden and cannot be directly extracted. However, the quantum information can be used in quantum
circuits that transform the state of qubits.

Now, imagine that it is ten years from now and someone announces the successful construction
of a large quantum computer. All the newspapers around the world run a frontpage article reporting
that all of the public-key algorithms used to protect the Internet have been broken. Users panic.
What exactly will happen to cryptography? Perhaps, after seeing quantum computers destroy RSA
and ECDSA (two of the most widely used cryptographic protocols nowadays), Internet users will
leap to the conclusion that cryptography is dead; that there is no hope of scrambling information to
make it incomprehensible to, and unforgeable by, attackers; that securely storing and communicating
information means using expensive physical shields to prevent attackers from seeing the information.

A closer look reveals, however, that there is no justification for the leap from “quantum computers
destroy RSA and ECDSA” to “quantum computers destroy cryptography”. There are many important
classes of cryptographic systems beyond the ones based on integer factorization or the discrete
logarithm problem: hash based, code based, lattice based, multivariate polynomials and isogeny
based (among others) are believed to be secure against a quantum capable adversary.

All of these systems are believed to resist classical computers and quantum computers attacks.
Nobody has figured out a way to apply Shor’s algorithm on them. Another quantum algorithm,
Grover’s algorithm, does have some applications to these systems; but Grover’s algorithm [Gro96]
is not as shockingly fast as Shor’s algorithm, and cryptographers can easily compensate for it by
choosing somewhat larger key sizes.

Some cryptographic systems, such as RSA with a large size key, are believed to resist attacks
by classical computers but do not resist attacks by quantum computers. Some alternatives, such as
McEliece (a code based encryption scheme) with a huge size key, are believed to resist attacks by
classical computers and attacks by quantum computers.

So why do we need to worry now about the threat of quantum computers? Why not continue to
focus on RSA? If someone announces the successful construction of a quantum computer ten year
from now, why not simply switch to McEliece? There are three important drawbacks that parts of
the cryptographic community are already starting to focus attention on postquantum cryptography:

• We need time to improve the efficiency of post-quantum cryptography.

• We need time to build confidence in post-quantum cryptography.

• We need time to improve the usability of post-quantum cryptography.

Anyway, what is making post-quantum cryptography so attractive for private companies and why
they are starting to use it? Sensitive data. Imagine an scenario where encrypted sensitive data (such

6

as passwords for a bank account) is stolen from a company. Then, the stealer could just wait 10
years and use a quantum computer to decrypt it. This long-term strategy was known since it was
created the concept of quantum computer, but it is nowadays when quantum computation seems
to be close to us and everybody prefers to be prepared for that moment. Hence, post-quantum
cryptography is not only a fresh topic to research on, but also a necessary tool to prevent “quantum
intruders” to read from our data.

In short, we are not yet prepared for the world to switch to post-quantum cryptography. Maybe
this preparation is unnecessary. Maybe we will not actually need post-quantum cryptography. Maybe
nobody will ever announce the successful construction of a large quantum computer. However, if we
do not do anything, and if it suddenly turns out years from now that users do need post-quantum
cryptography, years of critical research time will have been lost.

1.3 Thesis structure
The organization of this thesis is as follows. We explain the notation, the basic primitives that we
are going to use and an introduction to the theory of lattices in Section 2. We also provide in
Section 2 a detailed description of the lattice-based protocols that will constitute a key part in the
construction of our signature scheme. The main contribution of this thesis is the definition of a
linkable attribute-based signature scheme presented in Section 3. In Section 4 we provide a general
construction of this kind of signatures along with its security analysis. Moreover, we give in Section
5 an instantiation in the lattice setting showing that all the building blocks required by our generic
construction are obtainable from lattices. We finish with some conclusions in Section 6.

7

2. Preliminaries
This section is dedicated to fix the background that will be used throughout this thesis, explains the
different cryptographic primitives that are used in our scheme and provides a generalized version of
a sigma protocol. We mainly devote this thesis to lattice based cryptography protocols, and hence
we introduce lattices together with the principal lattice problems. Finally, we present the schemes
that we use as our underlying building blocks.

2.1 Notation
Column vectors are denoted with lower-case bold letters v , while matrices are denoted using upper-
case bold letters A. Furthermore, the transposed of a matrix A will be denoted AT and given
m, k1, k2 ∈ N we define [m] = {1, ... , m}, [k1, k2] = {k1, k1 + 1, ... , k2 − 1, k2} and Zm = Z/mZ.
Given two vectors u, v in an n-dimensional space, we write the standard inner product as 〈u, v〉 =
u · v =

n∑
i=1

uivi .

When a is sampled uniformly at random from a set A we write a $←− A, a $←− D when a is
sampled according to a probability distribution D and a $←− A when a is the output of a probabilistic
algorithm A. Similarly, if a is the output of some deterministic algorithm A, we will just omit the
superscript $ and write a← A.

For a vector x = (x1, ... , xn) and p ∈ [1,∞], the ℓp norm is ‖x‖p = (
∑

i∈[n] |xi |p)1/p when
p < ∞ and ‖x‖∞ = maxi∈[n] |xi |. Similarly, for a polynomial f = a0 + a1x + · · · + anxn, ‖f ‖p =
(
∑

i∈[0,n] |ai |p)1/p and ‖f ‖∞ = maxi∈[0,n] |ai |. This notation extends naturally for vectors and
matrices of polynomials. Moreover, given a prime q, we choose

[
−
⌊q

2
⌋
, ... , 0, ... ,

⌊q
2
⌋]

to be the
representatives of elements in Zq.

As for computational complexity, we use the traditional big-O notation. Namely, given two
functions f , g : N→ R we will use the following symbols:

• f = O(g) if ∃k > 0 and n0 > 0 such that ∀n ≥ n0, |f (n)| ≤ k · g(n);

• f = Ω(g) if g = O(f);

• f = Θ(g) if f = O(g) and f = Ω(g);

• f = o(g) if ∀k > 0 ∃n0 > 0 such that ∀n ≥ n0, |f (n)| < k · g(n);

• f = ω(g) if g = o(f).

In addition, we will also use the soft-O notation to hide logarithmic factors, i.e., with ~O(f) we
mean O(f · logc f) for some fixed constant c.

Now, we give the definition of a negligible function. Intuitively, a negligible function is one
that not only tends to zero as n → ∞, but does so faster than the inverse of any polynomial.
This functions capture the notion we want to achieve in practise when we talk about adversary’s
advantage.
Definition 2.1 (Negligible function). A function f : N → R is called negligible if for all c ∈ R≥0
there exists an n0 ∈ N such that for all n ≥ n0, we have

|f (n)| < 1
nc .

8

In computational hypothesis, we consider that a problem is hard if no Probabilistic Polynomial
Time (PPT for short) adversary is able to solve it with non-negligible probability.

In cryptography, the security parameter is a variable that measures the input size of a compu-
tational problem. We express the security parameter in unary so that the time complexity of the
cryptographic algorithm is polynomial in the size of the input: while the size of n is log n, the size of
1λ is λ. Moreover, we denote by negl(λ) the family of negligible functions on the security parameter
1λ, i.e., functions that, whenever λ→∞, tend to zero faster than the inverse of any polynomial.

2.2 Cryptographic primitives
Here we present in detail some of the cryptographic primitives that take part in the construction of
any robust electronic voting scheme.

2.2.1 Trapdoor functions

Informally, a one-way function is a function that is easy to compute on every input, but hard to
invert given the image of a random input.

A trapdoor (one-way) function is a special kind of one-way function. Intuitively, a trapdoor
function is a function f such that given an element x in its domain it is “easy” to compute the image
f (x), but given an element y in the codomain it is “infeasible”2 to obtain a preimage z ∈ f −1(y)
unless some secret information (called a trapdoor) is known.

Definition 2.2 (Trapdoor Function). A trapdoor function is a function f : X → Y satisfying the
following conditions:

• There exists a generator that, given a security parameter 1λ, outputs a function f together
with a trapdoor tf . Computing f (x) is an efficient process for all x ∈ X .

• There exists a PPT algorithm that, given f (x) and tf , efficiently computes z ∈ X such that
f (z) = f (x). That is, f is easy to invert when tf is known.

• For any PPT algorithm A:

Pr
[
f (z) = f (x) | (f , tf) $←− KeyGen(1λ), x $←− X , z $←− A(f , f (x))

]
∈ negl(λ)

To construct a trapdoor function that satisfies the above conditions, the hardness of the preimage
computation should be based on some computational hard problem.

For instance, assuming that it is difficult to factorize large composite numbers we can construct
a trapdoor function.

Example 2.3. Given two integers n, e such that (e,φ(n)) = 1, d ≡ e−1 (mod φ(n)) is the trapdoor
for the function

f (x) ≡ x e (mod n).

To check that, one just need to observe that f (x)d ≡ x ed ≡ x (mod n).
2In our definition we will not specifically define what we mean by “easy” or “infeasible”, as it will be clear by every

particular case.

9

2.2.2 Commitment schemes

Suppose that Alice wishes to play “paper-scissor-stone” over the telephone with Bob. When con-
ducted over the telephone we have the problem that whoever goes first is going to lose the game.
One way around this for the party who goes first is to “commit” to their choice, in such a way that
the other party can not determine what was committed to. Then the two parties can reveal their
choices, with the idea that the other party can then verify that the revealing party has not altered
its choice between the commitment and the revealing stage.

Such a scheme is called a commitment scheme, and the standard version of it is defined as
follows:

Definition 2.4 (Commitment Scheme). A commitment scheme with message space M and com-
mitment space C is a triple of algorithms (C.Gen, C.Com, C.Ver):

• C.Gen: The generator algorithm takes as input the security parameter 1λ and outputs a public
commitment key pk. pk $←− C.Gen(1λ).

• C.Com: The commitment algorithm takes as input the commitment key pk and a message
m ∈M, and outputs a commitment c and an opening d . We denote as DCom(pk, m) the set
of all possible outputs of this algorithm under fixed pk and m. (c, d) $←− C.Com(pk, m).

• C.Ver: The verification algorithm takes as input the commitment key pk, the message m, a
commitment c and an opening d as inputs and outputs 1 or 0 (i.e., Valid or Invalid). We
denote as DOpen(pk, m) the set of all possible pairs (c, d) this algorithm outputs 1 under fixed
pk and m. {0, 1} ←− C.Ver(pk, m, c, d).

We also require the commitment scheme to satisfy the following correctness notion:

• Correctness: For all m ∈M, pk $←− C.Gen(1λ), (c, d) $←− C.Com(pk, m) we have that

1←− C.Ver(pk, m, c, d)

In other words, if the commitment has been built correctly and the valid message and opening
are published the verifier algorithm always accepts.
Note that DOpen(pk, m) contains not only the pairs that are generated by C.Com, but also
those which are generated by a different algorithm and end up being labeled as Valid by
C.Ver. In particular, this implies that DCom(pk, m) ⊆ DOpen(pk, m). The elements in
DOpen(pk, m)\DCom(pk, m) are the principal concern in the security notions.
Finally, we say that a commitment scheme is secure if it satisfies the following two properties:

• Binding: A commitment can only be correctly opened to one message. This property can be
perfect or computational.
We call the scheme perfectly binding if:

1←− C.Ver(pk, m, c, d) ∧ 1←− C.Ver(pk, m′, c, d ′) =⇒ m = m′

We call the scheme computationally binding if, for all PPT adversaries A:

Pr[pk $←− C.Gen(1λ); (c, m, m′, d , d ′) $←− A(pk, 1λ) :
1←− C.Ver(pk, m, c, d) ∧ 1←− C.Ver(pk, m′, c, d ′) ∧ m 6= m′] ∈ negl(λ)

10

• Hiding: It should not be possible to recover a message m from a commitment c.
We call the scheme perfectly hiding if a commitment can be opened to any message:

given (c, d) $←− C.Com(pk, m), ∀m′∃d ′ such that 1←− C.Ver(pk, m′, c, d ′)

We call the scheme computationally hiding if, for all PPT adversaries (A1,A2):

|Pr[pk $←− C.Gen(1λ); (m0, m1, aux) $←− A1(pk); b $←− {0, 1};

(c, d) $←− C.Com(pk, mb); b′ $←− A2(c, aux) : b = b′]− 1/2| ∈ negl(λ)

Note that a secure commitment scheme can not be perfectly binding and perfectly hiding at the
same time, since this would lead to a contradiction. In Section 2.4.5 we define the commitment
scheme that we use in our protocols, which is perfectly binding and computationally hiding.

2.2.3 Digital signatures

Now imagine a situation where Bob receives an email claiming to be from his friend Alice. Bob
wants to verify that the email really is from Alice and he wants to do it without interacting more
with her. Digital signatures provide a simple solution to this. When sending an email to Bob, Alice
generates a signature on the message; and then she sends the message together with the signature
to Bob. Now, Bob can both read the message and assure himself that the message comes from
Alice.

Digital signatures are a crucial tool in electronic voting, allowing to verify the vote integrity once
it is received in the voting server. They also allow the verification of the voter eligibility.

Definition 2.5 (Digital Signatures). A digital signature scheme with message space {0, 1}ℓ is a
triple of algorithms (S.KeyGen, S.Sign, S.Verify):

• S.KeyGen: The key generation algorithm takes as input the security parameter 1λ and the
message length 1ℓ, and outputs a verification key vk and signing key sk.
(vk, sk) $←− S.KeyGen(1λ, 1ℓ).

• S.Sign: The signing algorithm takes as inputs the signing key sk and a message x ∈ {0, 1}ℓ,
and outputs a signature σ. σ $←− S.Sign(sk, x).

• S.Verify: The verification algorithm takes as inputs the verification key vk, the message x and
the signature σ, first checks that x ∈ {0, 1}ℓ, and then outputs 1 or 0 (i.e., Valid or Invalid).
{0, 1} ← S.Verify(vk, x,σ).

The digital signature scheme must satisfy the following correctness property:

• Correctness: For all λ, ℓ ∈ N and x ∈ {0, 1}ℓ we have that:

|Pr[(vk, sk) $←− S.KeyGen(1λ, 1ℓ);σ $←− S.Sign(sk, x) : 1←− S.Verify(vk, x,σ)]−1| ∈ negl(λ)

The common security notion for a digital signature is existential unforgeability under an adaptive
chosen message attack (eu-acma for short). Roughly speaking, an adversary should not be able to
forge a signature of a message of her choice. Even if this notion is not the strongest one, it is a

11

realistic one since it is not far from reality to assume that an adversary could have access to the
signing algorithm as a black box.

As usual in most of security notions surrounding modern cryptography, it is modelled using the
following attack game between an adversary A and a challenger:

1. The challenger runs (vk, sk) $←− S.KeyGen(1λ, 1ℓ) and sends vk to A.

2. A queries the challenger several times. For i = 1, 2, ... the i-th signing query is a message
x i ∈ {0, 1}ℓ. Given x i , the challenger computes σi

$←− S.Sign(sk, mi) and gives σi to the
adversary A.

3. EventuallyA outputs a candidate forgery pair (x,σ). The adversary wins if 1←− S.Verify(vk, x,σ)
and x is not one of the messages A has made signature queries.

We define the advantage of an adversary A as the probability that A wins the above game.

Definition 2.6 (eu-acma). We say that a digital signature scheme is eu-acma if the advantage of
the above game is negligible for all PPT adversaries.

2.3 Zero-knowledge proofs
Now suppose that Alice wants to convince Bob that she knows something without Bob finding out
exactly what Alice knows. This apparently contradictory state of affairs is dealt with using zero-
knowledge proofs. In the literature of zero-knowledge proofs the role of Alice is taken by Peggy and
called the prover, since she wishes to prove something, whilst the role of Bob is taken by Victor and
called the verifier, since he wishes to verify that the prover actually knows something. There is a
well-known story presenting the fundamental ideas of zero-knowledge proofs in the paper “How to
Explain Zero-Knowledge Protocols to Your Children” [Qui+90].

To change a little bit, we present these ideas through the game Where’s Wally?. Where’s Wally?
is a picture book game where the reader is challenged to find a small character called Wally hidden
somewhere on a picture that is filled with many other characters. The pictures are designed so that
it is hard to find Wally. An example of such a picture can be found in Figure 2.

Figure 2: Where’s Wally? average picture.

Imagine that you are a professional Where’s Wally? solver. A company comes to you with a
Where’s Wally? book that they need to solve. The company wants you to prove that you are

12

actually a professional Where’s Wally? solver and thus asks you to find Wally in a picture from their
book. The problem is that you do not want to do work for them without being properly paid. Both
you and the company want to cooperate, but you do not trust each other. It does not seem like it
is possible to satisfy the company’s demand without doing free work for them, but in fact there is
a zero-knowledge proof which allows you to prove to the company that you know where Wally is in
the picture without revealing to them how you found him.

The protocol goes as follows: You ask the company representative to turn around, and then you
place a very large piece of cardboard over a random picture in the book such that the center of the
cardboard is positioned over Wally. You cut out a small window in the center of the cardboard such
that Wally is visible. You can now ask the company representative to turn around and view the
large piece of cardboard with the hole in the middle, and observe that Wally is visible through the
hole. The cardboard is large enough that they can not determine the page of the book under the
cardboard. You can ask the representative to turn back around so you can remove the cardboard
and give back the book.

As described, this proof is an illustration only, and not completely rigorous. Moreover, even if it
is just a toy example, it is sufficient to understand the intuition behind zero-knowledge proofs.

Recall that a language L ⊆ {0, 1}∗ is said to have polynomial time recognizable binary relation
R ⊆ {0, 1}∗ × {0, 1}∗ if L = {x | ∃w s.t. (x , w) ∈ R} where the size |w | of w is at most p(|x |)
for some polynomial p. We call the string w a witness to the statement x ∈ L and we write LR to
denote that the language L is induced by the binary relation R.

A standard example of zero-knowledge proof in cryptography are Σ-protocols. Informaly, a Σ-
protocol is a protocol between a prover P and a verifier V in which, given an x , P tries to convince
V that he knows a witness w such that (x , w) ∈ R.

P(x , w) V(x)
chooses a message a a

samples a challenge b
b

creates an answer z z
accepts or rejects

Protocol 3: Rounds in a Σ-protocol.

Definition 2.7 (Σ-protocol). A protocol is said to be a Σ-protocol for the relation R if it satisfies:

• The protocol is of the above 3-form , and we have completeness: if P,V follow the protocol
on input x and private input w to P where (x , w) ∈ R, the verifier always accepts.

• From any x and any pair of accepting conversations on input x with same message a, for
instance (a, b, z), (a, b′, z ′) where b 6= b′, one can efficiently compute w such that (x , w) ∈ R.
This property is typically called soundness.

• There exists a polynomial-time simulator that takes as input x and a random b and outputs an
accepted conversation (a, b, z) with the same probability distribution as conversations between
honest P and V on input x . This property is known as zero-knowledge.

Example 2.8. Let p be a prime, q a prime divisor of p − 1, and g an element of order q in Z∗p
(the multiplicative group of Zp = Z/pZ). Suppose that a prover P has chosen w $←− Zq and has

13

published h ≡ gw (mod p). A verifier V who gets p, q, g , h can easily check that p, q are primes,
and that g , h have order q. Since there is only one subgroup of order q in Z∗p, this automatically
means that h ∈ 〈g〉, i.e. there exists an w such that h ≡ gw . But this does not necessarily mean
that P knows such an w .

We can solve this problem by using the following protocol:

1. P chooses r $←− Zq and sends a ≡ g r (mod p) to V.

2. V chooses a challenge b $←− Z2t and sends it to P. Here, t is a fixed positive integer such
that 2t < q.

3. P sends z ≡ r + bw (mod q) to V, who checks that gz ≡ ahb (mod p), that p, q are prime
and that g , h have order q, and accepts iff this is the case.

We can easily check that the above protocol is a Σ-protocol:

• If the protocol is constructed and followed correctly, the verifier will always accept.

• If (a, b, z) and (a, b′, z ′) are two accepted conversations, then we have that b, b′ ∈ Zq and
z ≡ r + bw (mod q) and z ′ ≡ r + b′w (mod q). Subtracting we obtain z − z ′ ≡ w(b − b′)
(mod q). Now, since b 6= b′ we have that b − b′ 6≡ 0 (mod q), meaning that b − b′ has
inverse mod q. Then, from two different challenges we could compute w = (z − z ′)(b−b′)−1

(mod q).

• To simulate it, simply choose at random the challenge b and z and then compute a = gzh−b

(mod p). This way, (a, b, z) is an accepted conversation and has exactly the same distribution
as real conversations between the prover and the verifier.

However, such a scheme only convinces the verifier who interacts with the challenger. Then, to
avoid repeating the above proof to many verifiers, normally this interactive protocol is transformed
into a non interactive protocol through the Fiat-Shamir transformation [FS87]. In this method, the
only who is playing a relevant role in the protocol is the prover, as the challenge of the verifier is
replaced by a hash of the commitment. This allow to emulate a truly random behaviour of the
verifier, so that the protocol still satisfies its three properties.

Definition 2.9 (Random Oracle). A random oracle is modeled as a black box that responds to every
query with a truly random answer chosen uniformly from its output domain. If a query is repeated,
it responds with the same answer.

Definition 2.10 (Fiat-Shamir transformation). Let (P,V) be a Σ-protocol for the relation R, and
H(·) a hash function with range equal to the verifier’s challenge space. The Fiat-Shamir transfor-
mation of the σ-protocol is the non-interactive proof system (PH ,VH) defined as follows:

PH(x , w): Run P(x , w) to obtain a message a, and compute b ←− H(x , a). Then complete
the run of P with b as the challenge to get the answer z . Finally, output the pair π = (a, b, z)
as the proof.

VH(x ,π): Return the output of V(a, b, z) if b = H(x , a) and 0 otherwise.

It is a well known fact that in the random oracle model, the Fiat-Shamir transformation of any
Σ-protocol is a non-interactive proof system.

14

Example 2.11. In order to make the Σ-protocol from Example 2.8 non-interactive, we just need to
replace the challenge from step 2 by b ←− H(g , h, a).

In this thesis we also use a variant of standard zero-knowledge proofs.
Definition 2.12 (Zero-Knowledge Proof). A (2n + 1)-move Public Coin Honest-Verifier Zero-
Knowledge proof of Knowledge, ZKPoK for short, is a protocol between a prover P and a verifier V
in which, given an x , P tries to convince V that he knows a witness w such that (x , w) ∈ R.
P and V engage in an interaction where P consecutively sends a message (also referred as

commitment) ai answered by V with a random challenge bi for i = 1, ... , n. Finally P gives a
final answer z and V outputs 1 or 0 (i.e., accepts or rejects the proof) checking the conversation
(x , {ai}ni=1, {bi}ni=1, z). The conversation is called a valid conversation if the verifier V outputs 1.

The protocol verifies the following properties:

• Completeness: If an honest prover P knows a valid witness w such that (x , w) ∈ R and
follows the protocol, then an honest verifier V always accepts the conversation.

• k-Special Soundness: From k valid conversations {(x , {aj
i}ni=1, {bj

i }ni=1, z j)}kj=1, and
{bj

i }ni=1 6= {b
j′
i }ni=1 for all j 6= j ′, it is possible to efficiently extract a witness w such that

(x , w) ∈ R.

• Honest-Verifier Zero-Knowledge (HVZK): There exists a polynomial-time simulator S that
takes x ∈ LR as input and random set of challenges {bi}ni=1 and outputs a valid conversation
(x , {ai}ni=1, {bi}ni=1, z) with the same probability distribution as conversations between honest
P and V. We will likely refer to this simulator as the zero-knowledge simulator of the protocol.

We say that the protocol is computationally (resp. statistically) special HVZK if the simulated
transcript is computationally (resp. statistically) indistinguishable from a real transcript.

P(x , w) V(x)
chooses a message a1 a1

samples a challenge b1
b1

...

...

chooses a message an an

samples a challenge bn
bn

creates a final answer z z
accepts or rejects

Protocol 4: (2n + 1) rounds in a ZKPoK.

As usual, completeness is required to make the protocol consistent. k-Special Soundness basically
means that a prover able to answer k challenges is honest, as in this case a witness could be extracted.
Finally, zero-knowledge simply tells us that no verifier learns anything other than the fact that the
statement is true. In other words, just knowing the statement (not the witness) is sufficient to
imagine a scenario showing that the prover knows the secret.

15

2.4 Lattices
In this section we recall some definitions about lattices and some well-known lattice problems and
properties that are inherent to our construction. In this section we assume that we are given a norm
‖·‖, and we consider it being the Euclidean norm (i.e., the ℓ2 norm ‖·‖2) unless stated otherwise.

2.4.1 Introduction to lattices

Definition 2.13 (Lattice). A lattice L is a set of points in an n-dimensional space, usually Rn, with
a periodic structure. That is, the following conditions hold:

• 0 ∈ L and ∀x, y ∈ L we have that −x, x + y ∈ L [additive subgroup]

• ∀x ∈ L we have that Bϵ(x) ∩ L = {x} for some ϵ > 0. [discrete]

where Bϵ(x) = {y ∈ Rn | ‖x − y‖ ≤ ϵ}.

Although every (non-trivial) lattice L is infinite, it is always generated as the integer linear
combinations of some linearly independent basis vectors (see Figure 5) in the following way.

Definition 2.14 (Full rank lattice). Given n linearly independent vectors b1, ... , bn ∈ Rn, the full-
rank lattice generated by them is the set:

L(b1, ... , bn) =
{ n∑

i=1
zibi | zi ∈ Z

}
= {Bz | z ∈ Zn} = L(B)

where B is the the matrix whose columns are the vectors b1, ... , bn. The vectors b1, ... , bn are
known as the basis of the lattice.

b1

b2

Figure 5: A lattice L(b1, b2) in R2.

Since we are going to deal only with full rank lattices, from now on we will simply address to
them with the term lattices.

Short lattice vectors play an important role in cryptographic applications. They are the basis of
most of the problems whose hardness will be used in our constructions.

16

Definition 2.15. We define the minimum λi(L) as:

(1) The norm of the shortest nonzero lattice vector v ∈ L defines λ1(L) = ‖v‖.

(2) The i-th successive minimum is defined λi(L) = minS(maxv∈S‖v‖), where S runs over all
linearly independent sets S ⊂ L with |S| = i .

Lattice-based cryptography constructions are based on the presumed hardness of lattice problems,
the most basic of which is the Shortest Vector Problem (SVP).

Definition 2.16 (SVP). Given a base B of a lattice L = L(B), find a non-zero lattice vector v ∈ L
for which ‖v‖ = λ1(L).

Here, we are given as input a lattice represented by its basis, and our goal is to output the shortest
nonzero vector in it. In fact, one typically considers the approximation variant of SVP 3 (denoted
SVPγ) where the goal is to output a lattice vector whose length is at most some approximate factor
γ(n) times the length of the shortest nonzero vector, where n is the dimension of the lattice:

Definition 2.17 (Approximate Shortest Vector Problem (SVPγ)). Given a base B of an n-dimensional
lattice L = L(B), find a non-zero lattice vector v ∈ L for which ‖v‖ ≤ γ(n) · λ1(L).

The most well known and widely studied algorithm to attempt to solve this lattice problem is
the LLL algorithm, developed by Lenstra, Lenstra and Lovász (see [LLL82]). This is a polynomial
time algorithm for SVP that achieves an approximation factor of 2O(n). Anyways, if one insists of an
exact solution to SVP, or even just an approximation to within polynomial factors, the best known
algorithm has a running time of 2O(n). The space requirement for this algorithm is unfortunately
also exponential which makes it essentially impractical.

This discussion leads us to the following conjecture.

Conjecture 2.18. There is no polynomial time algorithm that approximates lattice problems to
within polynomial factors.

Less informally, it is conjectured that approximating lattice problems to within polynomial factors
is a hard problem. The security of many lattice-based cryptographic constructions is based on this
conjecture.

The field of lattice-based cryptography has been developed based on the assumption that lattice
problems are hard. But is lattice-based cryptography suitable for a post-quantum world? Are lattice
problems hard even for quantum computers? The correct answer to this questions is “probably
yes”. There are currently no known quantum algorithms for solving lattice problems that perform
significantly better than the best known classical (i.e., non quantum) algorithms.

Attempts to solve lattice problems by quantum algorithms have been made since Shor’s discovery
of the quantum factoring algorithm [Sho99], but have so far met with little success within polynomial
time. The main difficulty is that the periodicity finding technique, which is used in Shor’s factoring
algorithm and related quantum algorithms, does not seem to be applicable to lattice problems. It
is therefore natural to consider the following conjecture, which justifies the use of lattice-based
cryptography for post-quantum cryptography:

Conjecture 2.19. There is no polynomial time quantum algorithm that approximates lattice prob-
lems to within polynomial factors.

3This kind of variant is not only defined for the SVP problem, but they are also similarly defined for most of lattice
based problems.

17

2.4.2 Lattice problems

Any lattice admits multiple basis, and this fact is at the core of many cryptographic applications.

Theorem 2.20. L(B) = L(B′) if and only if there exists a unimodular matrix U (i.e., an integer
square matrix with determinant ±1) such that B′ = BU.

Proof. (=⇒) If L(B) = L(B′) then each column b′i of B′ (or any combination of them) is a point
of the lattice L(B). That means that b′i = Bu i , where ui ∈ Zn, and repeating this argument
for all the columns of B′ we have that B′ = BU, where U is an integer matrix. Analogously we
have that B = B′V , with V another integer matrix. Combining the both expressions we have that
B = BUV . Then B(In − UV) = 0, where In is the identity matrix. Multiplying by the inverse of
B we have In = UV which means that U is unimodular.

(⇐=) B′ = BU means that the columns of B′ are integer combinations of columns of B
(L(B′) ⊆ L(B)). Multiplying the previous equality by U−1 (which is also unimodular) we have
that B = B′U−1 meaning that the columns of B are integer combinations of columns of B′
(L(B) ⊆ L(B′)). Hence L(B) = L(B′). ■

This theorem leads us to define the determinant of lattices:

Definition 2.21. The determinant of a lattice is the absolute value of the determinant of the basis
matrix

det (L(B)) = |det (B)|

Definition 2.22 (Dual Lattice). The dual of a lattice L ⊂ Rn is the lattice:

L∗ = {y ∈ Rn | 〈x, y〉 ∈ Z for all x ∈ L}

Proposition 2.23. Let B ∈ Rn×n be a basis of a lattice L. Then L∗ is the lattice generated by
(BT)−1 = (B−1)T . Moreover, det (L∗) = 1/ det (L).

Proof. It is easy to see that L∗ is a lattice. By definition, y ∈ L∗ if and only if BT y ∈ Zn. This
is the same as y = (BT)−1x for some x ∈ Zn. This implies that the dual L∗ of a lattice L is
generated by the columns of (BT)−1. Furthermore, it follows that

det (L∗) =
∣∣∣det ((BT)−1)

∣∣∣ = 1
|det (B)| = 1

det (L)

■

In cryptography we will be more concerned about q-ary lattices, because they are easier to work
with in a computer. Intuitively, a q-ary lattice is an integer lattice where the membership of a point
x in L is determined by x (mod q). Such lattices are in one-to-one correspondence with linear codes
in Zn

q.

Definition 2.24 (q-ary lattice). A lattice L is a q-ary lattice if qZn ⊆ L ⊆ Zn.

It is straightforward to see that the following are two q-ary lattices:
Given a matrix A ∈ Zn×m

q for some integers q, n, m, we can define two m-dimensional q-ary
lattices:

Λq(A) =
{

y ∈ Zm | y = AT z (mod q) : z ∈ Zn
}

18

and
Λ⊥q (A) = {y ∈ Zm | Ay = 0 (mod q)}.

Note that both lattices have full rank since they contain qZm.
Λq(A) and Λ⊥q (A) can also be viewed as linear codes: the first is generated by the rows of

A and the second contains all vectors that are orthogonal modulo q to the rows of A. In other
words, the first q-ary lattice corresponds to the code generated by the rows of A whereas the second
corresponds to the code whose parity check matrix is A. It is a well-known fact that these two
lattices are dual to each other, up to normalization:

Λ⊥q (A) = qΛq(A)∗ and Λq(A) = qΛ⊥q (A)∗.

These lattices will also allow us to define some more lattice problems.
Definition 2.25 (Short Integer Solution (SISn,m,q,β)). Let ai ∈ Zn

q be m uniformly random vectors
forming the columns of a matrix A ∈ Zn×m

q . Assuming that q > β, find a non-zero integer vector
x ∈ Zm of norm ‖x‖ ≤ β such that

Ax =
m∑

i=1
ai · xi = 0 ∈ Zn

q.

Here is important to remark some observations about the SIS problem:

• Without the upper-bound on ‖x‖, one may use Gaussian elimination to find a solution. If
q ≤ β, then z = (0, ... , 0, q, 0, ... , 0) ∈ Zm would be a trivial solution.

• The norm β and the number m of vectors ai must be large enough that a solution is guaranteed
to exist. This is the case whenever β ≥ √—m and m ≥—m, where —m is the smallest integer
greater than n log q, by a pigeonhole argument. There are more than qn vectors x ∈ {0, 1}m,
there must be two distinct x, x ′ such that Ax = Ax ′ ∈ Zn

q, so their difference z = x − x ′ ∈
{0, 1,−1}m is a solution of norm at most β.

Finding short vectors in the dual lattice Λ⊥q (A) is finding a short solution to a set of n random
equations modulo q in m variables. The SIS problem asks to find a sufficiently short non-zero vector
in Λ⊥q (A), where A is chosen uniformly at random.

We can also define an inhomogeneous version of the SIS problem.
Definition 2.26 (Inhomogeneous Short Integer Solution (ISISn,m,q,β)). Let A ∈ Zn×m

q be an uni-
formly random matrix and u ∈ Zn

q an uniformly random vector. Find a non-zero vector x ∈ Zm of
norm ‖x‖ ≤ β such that Ax = u.

Note that finding two different solutions to the ISIS problem implies finding a solution to the
SIS problem. These lattice problems are considered as hard as well known hard lattice problems (see
[MR07] for the reductions).

One of the most known lattice problems to build up cryptographic protocols is the Learning With
Errors (LWE).
Definition 2.27 (LWE distribution). Let n, q be integers, χ a discrete probability distribution over
Z (usually a discrete Gaussian distribution) and s a “secret” vector from Zn

q.
We denote by As,χ the probability distribution over Zn

q × Zq obtained by choosing a ∈ Zn
q

uniformly at random, choosing e $←− χ and considering it in Zq and calculating (a, b = (〈a, s〉 +
e)) ∈ Zn

q × Zq.

19

There are two main versions of the LWE problem: the search version, which is to find the secret
given LWE samples, and the decision version, which is to distinguish between LWE samples and
uniformly random ones.

Definition 2.28 (Search-LWEn,m,q,χ). Given m independent samples (ai , bi) ∈ Zn
q×Zq drawn from

As,χ, find s.

Definition 2.29 (Decision-LWEn,m,q,χ). Given m independent samples (ai , bi) ∈ Zn
q × Zq where

every sample is distributed according to either As,χ or the uniform distribution over Zn
q × Zq,

distinguish which is the case.

Again, it is important to remark some observations about the search and decision LWE problem:

• Without the error term e, both problems are easy to solve, because we can efficiently recover
s from LWE samples by Gaussian elimination.

• It is often convenient to combine the given samples into a matrix A ∈ Zn×m
q (whose columns

are the vectors ai ∈ Zn
q) and a vector b ∈ Zm

q (whose entries are the bi ∈ Zq), so that for
LWE samples we have

bT = sT A + eT ,

where e $←− χm.

If we consider A as the matrix that defines Λq(A) then the search version problem becomes
recovering the coordinates of a point in this lattice after perturbing it with the error, while the
decisional version is to distinguish random points in Zm from perturbed Λq(A) points.

It has been shown that any polynomial number of samples from the LWE look random to any
polynomial-time attacker (it is as hard as the approximated SVP [LPR13]).

2.4.3 Ideal lattices

Observe that A has quadratic size in the dimension of the lattice, so that it yields to a high com-
munication cost. In fact, the efficiency of lattice-based cryptography can be substantially improved
replacing general matrices by matrices with a special structure.

Definition 2.30. Given a vector f = (f0, ... , fn−1) ∈ Zn we define the transformation matrix asso-
ciated to f as:

F =

0T −f0

. . . −f1
In−1

...
. . . −fn−1

 .

Definition 2.31 (Ideal Lattice). An ideal lattice is a lattice L(A) generated by a block matrix
A =

(
A(1) | · · · | A(m/n)

)
whose blocks A(i) are constructed from a vector a(i) and a transformation

matrix F :
A(i) = F ∗a(i) =

(
a(i), Fa(i), ... , Fn−1a(i)

)
.

20

Example 2.32. Let f = (−1, 0, ... , 0). Then, we have that each block A(i) is a circulant matrix

A(i) =

a(i)

1 a(i)
n ... a(i)

3 a(i)
2

a(i)
2 a(i)

1 ... a(i)
4 a(i)

3...
a(i)

n−1 a(i)
n−2 ... a(i)

1 a(i)
n

a(i)
n a(i)

n−1 ... a(i)
2 a(i)

1

 ,

i.e., a matrix whose columns are all cyclic rotations of the first column a(i) = (a(i)
1 , ... , a(i)

n).

Ideal lattices with block matrices like the previous one are typically called cyclic lattices. An
important implication of the circulant structure of the blocks is that it reduces the amount of space
needed from nm elements from Zq to just m elements, because each block A(i) is fully specified
by its first column a(i) = (a(i)

1 , ... , a(i)
n). No better algorithms (than those for general lattices) are

known to solve some of the underlying lattice problems for such cyclic lattices. So, it is reasonable
to assume that solving some of the underlying lattice problems on these lattices is as hard as the
general case.

For general f , the corresponding lattices have been called ideal lattices because they can be
equivalently characterized as ideals in the polynomial ring R = Z[x]/〈f (x)〉, where f (x) = f0 +
f1x + · · ·+ fn−1xn−1 +xn ∈ Z[x]. The reason for the name ideal is that multiplying two polynomials
a, b ∈ R is equivalent to multiply the matrix A constructed from the vector a (here and whenever
it is necessary, we identify a polynomial a with a vector a whose coordinates are the coefficients of
the polynomial) with the vector b.

An important question to remark here is asking how hard is to find short vectors in the lattice
Λq(A), where A is the block matrix defined above. It has been shown in [Mic07] that if f =
(−1, 0, ... , 0) then short vectors can be easily found in time O(q). On the other hand, finding short
vectors in Λq(A) on the average is as hard as solving various lattice problems in the worst case over
ideal lattices (see [LM06] for the reductions), provided that the vector f satisfies the following two
properties:

• For any two unit vectors u, v , the vector [F ∗u]v has small norm.

• The polynomial f (x) = f0 + f1x + · · ·+ fn−1xn−1 + xn ∈ Z[x] is irreducible over the integers,
i.e., it does not factor into the product of integer polynomials of smaller degree.

Notice that the first property is satisfied by the vector f = (−1, 0, ... , 0) corresponding to
circulant matrices, but the polynomial xn − 1 corresponding to f is not irreducible.

To solve this problem, we typically choose f to be (1, 0, ... , 0), so that f (x) = xn + 1, with n a
power of 2, as it satisfies both properties and gives us nice security reductions. This way each block
of the matrix A is an anti-cyclic matrix:

A(i) =

a(i)

1 −a(i)
n ... −a(i)

3 −a(i)
2

a(i)
2 a(i)

1 ... −a(i)
4 −a(i)

3...
a(i)

n−1 a(i)
n−2 ... a(i)

1 −a(i)
n

a(i)
n a(i)

n−1 ... a(i)
2 a(i)

1

so that every element above the diagonal in circulant matrices is replaced by its negative.

21

No algorithm is known to take advantage of the structure in anti-cyclic lattices to efficiently
solve the ideal (or ring) version of the lattice problems presented before.

In the following we denote by Rq to Zq[x]/〈f (x)〉, where f (x) is a polynomial of degree n. If
not stated otherwise, in what follows we choose f (x) to be xn + 1, with n a power of 2. Similarly
as R, ideals in Rq corresponds with lattices in Zn

q.

Definition 2.33 (Ring Short Integer Solution (R-SISn,m,q,β)). Let a = (a1, ... , am) ∈ Rm
q be a

uniformly random vector of polynomials. Find a non-zero vector of polynomials x = (x1, ... , xm) ∈
Rm of norm ‖x‖ ≤ β such that

〈a, x〉 =
m∑

i=1
aixi = 0 ∈ Rq.

There are efficient reductions from the ideal version of SVPγ to R-SIS, so that this problem is
also believed to be hard [PR06].

Now we define the main problem we often work with. It is the ideal version of LWE, which is
called Ring Learning With Errors (R-LWEn,m,q,χ).

Definition 2.34 (R-LWE distribution). Let n, q be integers, χ a discrete probability distribution over
R (usually a discrete Gaussian distribution) and s a “secret” element from Rq.

We denote by As,χ the probability distribution over Rq × Rq obtained by choosing a ∈ Rq

uniformly at random, choosing e $←− χ and considering it in Rq and calculating (a, b = (a ·s +e)) ∈
Rq × Rq.

Again, there are two versions of the problem:

Definition 2.35 (Search-R-LWEn,m,q,χ). Given m independent samples (ai , bi) ∈ Rq × Rq drawn
from As,χ, find s.

Definition 2.36 (Decision-R-LWEn,m,q,χ). Given m independent samples (ai , bi) ∈ Rq × Rq where
every sample is distributed according to either As,χ or the uniform distribution over Rq × Rq,
distinguish which is the case.

If parameters are chosen properly, the R-LWE problem becomes as hard as well known hard ideal
lattice problems such as the ideal version of the approximated Shortest Vector Problem (SVPγ) (see
[LPR13]).

2.4.4 Trapdoors from lattices

Typical operations in lattice-based cryptography are the selection of uniformly random integer ma-
trices A modulo q, and then the evaluation of simple linear functions like

fA(x) := Ax (mod q) and gA(x, e) := xT A + eT (mod q).

on short integer vectors x, e. One can easily check that an adversary able to invert these functions
could solve some hard problems such as ISIS (for the former) and LWE (for the latter).

All lattice cryptography is not just as simple as choosing random integer matrices A and the
evaluation of linear functions. In fact, these operations yield only collision-resistant hash functions,
public-key encryption schemes that are secure under passive attacks, and similar non-complex con-
structions. From a practical point of view, advanced schemes such as chosen ciphertext secure

22

encryption also require generating a matrix A together with some trapdoor, typically in the form of
a nonsingular square matrix S of short integer vectors such that

AS = 0 (mod q).

That is, a short basis of the lattice Λ⊥q (A).

Definition 2.37. We say that a matrix G ∈ Zn×m
q is primitive if

G · Zm = Zn
q,

i.e., if the columns of G generate all of Zn
q.

Works before Micciancio and Peikert [MP12] focused on constructing a random matrix A through
some specialized and complex process to obtain a trapdoor. Micciancio and Peikert changed this
approach by not starting directly dealing with A, but instead crafting a public matrix G, for which
the associated functions fG and gG admit very efficient and high-quality inversion algorithms. G is
normally called a gadget matrix and it is built (in its non-ring version) as the tensor product of a
primitive vector and the identity matrix.

Now, we extend G into a semi-random matrix A′ = [—A | G], for uniformly random matrix —A. It
is easy to see how the task of preimage sampling for fA′ reduces very efficiently to the corresponding
task for fG :

fA′(x) = [—A | G]x =—Ax1 + Gx2 = y ;

f −1
A′ (y) = (xT

1 | f −1
G (y −—Ax1)T); (1)

where x = (x1, x2) has been divided appropriately. So to invert fA′ one would just need to invert
fG .

Finally, we simply apply to A′ a transformation defined by the matrix

T =
(

I −R
0 I

)
for a random “short” secret matrix R that will serve as a trapdoor, to obtain

A = A′ · T = [—A | G −—AR].

The transformation T has the following properties:

- It is very easy to compute and invert. Note that T−1 =
(I R

0 I
)
.

- It results in a matrix A that is distributed statistically close to uniformly at random (see [MP12]
for the details).

- For the resulting functions fA and gA, preimage sampling and inversion reduce to the corre-
sponding tasks for fG and gG .

The last property follows from the fact that

fA(x) = A′Tx = y ;

f −1
A (y) = T−1f −1

A′ (y);

23

and using (1) we obtain the desired property. More complex but similar methods can be used to
invert the function gA instead.

We will be more interested in the ring version of all of this methods, as we will use a signature
scheme its security is based in the R-SIS problem (described in Section 2.4.6). However, Micciancio
and Peiker explain in [MP12] how all their constructions and algorithms are still valid and could
extend to the ring setting.

2.4.5 R-LWE based commitment scheme

We use for our construction the commitment scheme proposed by Martínez and Morillo [MM19],
which is a non-relaxed version of the one proposed by Benhamouda et al. [Ben+14]. Specifically,
the opening algorithm in [Ben+14] accepts commitments from a larger space than those generated
by the commitment algorithm; while in [MM19] the set of valid openings coincides with the set of
openings obtained from the commitment algorithm.

This scheme will be the appropriate one because, apart from being a quantum resistant commit-
ment scheme, it allow us to prove in zero-knowledge linear and multiplicative relations between the
committed messages. In particular, this scheme allows us to prove (in zero-knowledge) polynomial
relations (which are represented by arithmetic circuits).

The commitment scheme is defined by the following three algorithms:

• C.Gen: The generator algorithm takes as input the security parameter 1λ and outputs a public
key pk = (a, b) ∈ (Rk

q)2, where Rq = Zq[x]/〈xn + 1〉 and k are defined so that the difficulty
of solving the R-LWE problem is related to 1λ. pk $←− C.Gen(1λ).

• C.Com: The commitment algorithm takes as input the commitment key pk and a message
m ∈ Rq, and outputs a commitment c = am + br + e and an opening d = (m, r , e), where
r $←− Rq and e $←− χk so that ‖e‖∞ < n, with n = 2κ, for some appropiate κ. Here, χ is a
distribution over R. (c, d) $←− C.Com(pk, m).

• C.Ver: The verification algorithm takes as input the commitment key pk, the message m, a
commitment c and an opening d as inputs and accepts if c = am + br + e and ‖e‖∞ < n,
or rejects otherwise. {0, 1} ←− C.Ver(pk, m, c, d).

Theorem 2.38 (Proposition 1, [MM19]). If n ≥ 256, γ ≥ 3 and k ≥ 8γ+4
2γ−5 then the above is a

secure (perfectly binding and computationally hiding) commitment scheme under the assumption
that R-LWE is hard.

Proof Sketch. Correctness follows immediately.
To prove the binding property, recall that two accepted openings to the same commitment would

be:

c = am + br + e,
c = am′ + br ′ + e′;

which is the same as a(m − m′) + b(r − r ′) + (e − e′) = 0. Hence, if q ≡ 3 (mod 8), with
overwhelming probability over the choice of a and b, there are no —m,—r ∈ Rq and—e ∈ Rk

q small such
that a—m + b—r +—e = 0 holds and —m 6= 0 (the probability that this occurs is negligible). This implies
that the commitment scheme is perfectly binding.

24

The above uses the fact that whenever q ≡ 3 (mod 8), xn + 1 splits into two irreducible
polynomials p1(x), p2(x) over Zq[x].

Finally, since br +e are k R-LWE samples, indistinguishable from independent uniformly random
polynomials under the R-LWEn,q,χ assumption, any adversary able to break the hiding property would
be able to solve the decisional R-LWEn,q,χ. ■

P((a, b), c; m, r , e) V((a, b), c)
π0,π1, ... ,πκ

$←− S2nk

f 0, f 1, ... , f κ
$←− Z2nk

q

µ, ρ $←− Rq
(c1, d1) = aCom

(
aµ+ bρ+ ϕ(I ′Σj2j f j), {πj}j

)
(c2, d2) = aCom

(
{πj(e′

j)}j , {πj(f j)}j
)

c1, c2

α
$←− Zq

α

g j = πj(f j + αe′
j)

{g j}j

b $←− {0, 1}
b

if b = 0
π̃j = πj
ỹ = aµ+ bρ+ ϕ(I ′Σj2j f j)
s̃ = ρ+ αr
d̃ = d1

ans = ({π̃j}j , ỹ , s̃, d̃)
if b = 1

ẽ′
j = πj(e′

j)
d̃ = d2

ans = ({ẽ′
j}j , d̃)

ans

if b = 0
1 ?←− aVer((ỹ , {π̃j}j), c1, d̃)

ỹ + α(c + ϕ(2κ1nk))− bs̃ − ϕ(I ′Σj2j π̃−1
j (g j))

?
∈ L(a)

if b = 1
1 ?←− aVer(({ẽ′

j}j , {g j − αẽ′
j}j), c2, d̃)

ẽ′
j

?
∈ Bnk

Protocol 6: ZKPoK of a valid opening.

This commitment scheme is specially interesting as allows someone knowing the openings to
prove knowledge of a valid opening and linear and multiplicative relations between the messages of
distinct commitments. Since it will be used later by our linkable attribute based signature scheme,
we expose in Protocol 6 the ZKPoK for proving knowledge of a valid opening in the commitment

25

scheme4.
The main objective of this protocol is to prove the knowledge of a valid opening for the commit-

ment c = am + br + e. They do that by also proving knowledge of some masking elements µ, ρ, f
and a of vector of polynomials y such that:

(a) πj(e′j) ∈ Bnk ,

(b) y + αc = a(µ+ αm) + b(ρ+ αr) + (f + αe),

where Bnk ⊂ {0, 1}2nk are vectors with the same number of 0’s and 1’s, and the e′j are extensions
to dimension 2nk of the binary representation of the vector of polynomials e.

Since the important elements were committed in the first round (using an auxiliary commitment
scheme (aCom, aVer)) before α was chosen, these two properties imply knowledge of a valid opening
for the commitment. In Protocol 6 you can see the details on how they obtain this. We will refer
to it as ΠOpen.

Clearly, the commitment scheme is not homomorphic, since the sum of two commitments may
not be a commitment to the sum as the errors may grow and overcome the upper bound for the
norm. However it is possible to prove knowledge of openings to different commitments proving that
the committed messages satisfy a given linear relation. Namely, we want to prove knowledge of
valid openings for some commitments c i = ami +bri +e i such that the messages that they commit
satisfy the relation

m3 = λ1m1 + λ2m2.

This can be done analogously as the previous case, just by running Protocol 5 three times
imposing that the message masking elements hold the same linear relation. We will denote it as
ΠAdd and the scheme is exposed in Protocol 7.

A proof of knowledge of a multiplication relation is a little more tricky. We have three valid
commitments c i = ami + bri + e i such that the messages that they commit satisfy the relation

m3 = m1 ·m2,

and we want to prove knowledge of valid openings for the commitments c i satisfying this relation.
Similarly, we mask the messages m1 and m2 with random µ1,µ2

$←− Rq. When we multiply
them, some crossed terms appear: (m1 + µ1)(m2 + µ2) = m3 + (m1µ2 + m2µ1) + µ1µ2. If we want
to get m3 = m1 ·m2 we need to prove a similar equality involving two challenges α,β $←− Zq chosen
by the verifier. In fact, this protocol can also be seen as parallel executions of the first protocol, but
taking into account the crossing terms. Similarly, we will expose it in Protocol 8 and denote it as
ΠMult.

4See [MM19] for particular details or notation on the protocols in this section.

26

P((a, b), c i ; mi , ri , e i) V((a, b), c)
πi0,πi1, ... ,πiκ

$←− S2nk

f i0, f i1, ... , f iκ
$←− Z2nk

q

µ1,µ2, ρ1, ρ2, ρ3
$←− Rq

µ3 = λ1µ1 + λ2µ2
(c1, d1) = aCom

(
{aµi + bρi + ϕ(I ′Σj2j f ij)}i , {πij}i ,j

)
(c2, d2) = aCom

(
{πij(e′

ij)}i ,j , {πij(f ij)}i ,j
)

c1, c2

α
$←− Zq

α

g ij = πij(f ij + αe′
ij)

{g ij}i ,j

b $←− {0, 1}
b

if b = 0
π̃ij = πij
ỹ i = aµi + bρi + ϕ(I ′Σj2j f ij)
s̃i = ρi + αri

d̃ = d1

ans = ({π̃ij}i ,j , {ỹ i}i , {s̃i}i , d̃)
if b = 1

ẽ′
ij = πij(e′

ij)
d̃ = d2

ans = ({ẽ′
ij}i ,j , d̃)

ans

if b = 0
1 ?←− aVer(({ỹ i}i , {π̃ij}i ,j), c1, d̃)

ỹ i + α(c i + ϕ(2κ1nk))− bs̃i − ϕ(I ′Σj2j π̃−1
ij (g ij))

?
∈ L(a)

t̃3
?= λ1t̃1 + λ2t̃2

if b = 1
1 ?←− aVer(({ẽ′

ij}ij,, {g ij − αẽ′
ij}i ,j), c2, d̃)

ẽ′
ij

?
∈ Bnk

Protocol 7: ZKPoK of a linear relation between the messages.

27

P((a, b), c i ; mi , ri , e i) V((a, b), c)
πi0,πi1, ... ,πiκ

$←− S2nk

f i0, f i1, ... , f iκ
$←− Z2nk

q

µi ,µ+,µ×, ρi
$←− Rq

m× = µ1µ1, m+ = µ1m2 + µ2m1
(c1, d1) = aCom

(
{aµi + bρi + ϕ(I ′Σj2j f ij)}i , {πij}i ,j

)
(c2, d2) = aCom (µ3,µ×,µ+)
(c3, d3) = aCom

(
{πij(e′

ij)}i ,j , {πij(f ij)}i ,j ,
)

(c4, d4) = aCom (µ× + m+,µ+ + m+)
c1, c2, c3, c4

α,β $←− Zq
α

δ1 = α, δ2 = α, δ3 = β
g ij = πij(f ij + δie′

ij)
(c5, d5) = aCom

(
(βµ×) + α(βµ+) + α2(µ3)

)
{g ij}i ,j , c5

b $←− {0, 1}
b

if b = 0
π̃ij = πij
ỹ i = aµi + bρi + ϕ(I ′Σj2j f ij)
t̃× = µ× + m×, t̃+ = µ+ + m+, s̃i = ρi + δi ri

d̃1 = d1, d̃4 = d4, d̃5 = d5

ans = ({π̃ij}i ,j , {ỹ i}i , t̃×, t̃+, {s̃i}i , d̃1, d̃4, d̃5)
if b = 1

ẽ′
ij = πij(e′

ij)
µ̃3 = µ3, µ̃× = µ×, µ̃+ = µ+

d̃2 = d2, d̃3 = d3, d̃5 = d5

ans = ({ẽ′
ij}i ,j , µ̃3, µ̃×, µ̃+, d̃2, d̃3, d̃5)

ans

if b = 0
1 ?←− aVer(({ỹ i}i , {π̃ij}i ,j), c1, d̃1)

1 ?←− aVer((t̃×, t̃+), c4, d̃4)
1 ?←− aVer(βt̃× + αβt̃+ + α2t̃3 − βt̃1t̃2, c5, d̃5)

ỹ i + δi(c i + ϕ(2κ1nk))− bs̃i − ϕ(I ′Σj2j π̃−1
ij (g ij))

?
∈ L(a)

if b = 1
1 ?←− aVer((µ̃3, µ̃×, µ̃+), c2, d̃2)

1 ?←− aVer(({ẽ′
ij}ij,, {g ij − αẽ′

ij}i ,j), c3, d̃3)
1 ?←− aVer((βµ̃×) + α(βµ̃+) + α2(µ̃3), c5, d̃5)

ẽ′
ij

?
∈ Bnk

Protocol 8: ZKPoK of a multiplicative relation between the messages.

28

2.4.6 R-SIS based signature scheme

In this section we describe the variant of Boyen’s signature [Boy10] by Micciancio and Peikert
[MP12], adapted to have security based on hardness assumptions on ideal lattices. We begin by
recalling some definitions and properties concerning the discrete Normal distribution.

Definition 2.39. The continuous Normal distribution over Rn centered at v with standard deviation
σ is defined by the function

ρn
v ,σ(x) =

(
1√

2πσ2

)n
e
−‖x − v‖2

2σ2 .

When v = 0, we will just write ρn
σ(x).

Definition 2.40. The discrete Normal distribution over Zn centered at some v ∈ Rn with standard
deviation σ is defined as

Dn
v ,σ(x) =

ρn
v ,σ(x)
ρn
σ(Zn) .

We write Dn
σ(x) whenever v = 0. In the above definition, the quantity ρn

σ(Zn) =
∑

z∈Zn
ρn
σ(z) is

just a scaling quantity needed to make the function into a probability distribution. Also note that
ρn

v ,σ(Zn) = ρn
σ(Zn) for all v ∈ Zn, thus the scaling quantity is the same for all v .

A sample z from a discrete Normal distribution over Rq centered at v with standard deviation
σ, denoted DRq ,v ,σ, is generated as a sample from a discrete Normal distribution over Zn and then
map it into Rq using the previous mentioned embedding of coordinates into coefficients of the
polynomial. Similarly, we omit the 0 and just write y = (y1, ... , yk) $←− Dk

Rq ,σ to mean that a vector
y is generated according to Dσ over Zkn and then gets interpreted as k polynomials yi . With an
abuse of notation, we denote by D⊥A,u,σ the distribution of the vectors v ∈ Rm

q such that v $←− Dm
Rq ,σ

conditioned on Av ≡ u (mod q), where A is an appropriate matrix with m columns.
The following lemma will provide useful properties of this distribution.

Lemma 2.41 (Lemma 2.1, [Bos+20]). Let n > 0. The following bounds hold:

1. Pr
z $←−Dn

σ

(‖z‖ > 1.05σ
√

n) < (0.998)n,

2. Pr
z $←−Dn

σ

(‖z‖∞ > 8σ) < n2−47.

Recall that existential unforgeability against adaptive chosen-message attacks requires that the
adversary should not be able to forge a signature on some message of her choice, even if she has
access to a signing oracle.

Lemma 2.42 (Trapdoor generation, adapted from [Bos+20]). Let m = 2, k = dlog qe,—m = m + k.
There exists an algorithm GenTrap that, on input an invertible element h ∈ Rq, outputs a vector
—a ∈ R—m

q and a trapdoor R ∈ Rm×k
q such that:

• —a = [a | aR + hg], where g is the gadget vector g = [1, 2, 22, ... , 2k−1] ∈ Rk
q , and a = [a |

1] ∈ Rm
q , a $←− Rq.

• R is distributed as a Normal Dm×k
R,s for some s = αq, where α > 0 is a R-LWE error term,

αq > ω(
√

log n).

29

• —a is computationally pseudorandom (ignoring the component set to 1) under Decision-R-LWE,
where we set χ = DR,s .

Genise and Micciancio [GM18] give an optimal sampling algorithm for the previous trapdoor.

Lemma 2.43 (Gaussian sampler, adapted from [Bos+20]). Let Rq, m, k,—m be as in Lemma 2.42, g
be the gadget vector g = [1, 2, 22, ... , 2k−1], a ∈ Rm

q and R ∈ Rm×k
q be the output of GenTrap, and

v a vector in Rd
q for some d ≥ 0. Then, there is an algorithm SampleD that can efficiently sample

from the distribution D⊥[a|aR+g |v],u,s for any s = O(
√

n log q) · ω(
√

log n) and for any u ∈ Rq.

Before moving on, it is worth to recall here some other kind of notions of security for a digital
signature scheme than those defined in Section 2.2.3. It is also modelled using the following attack
game between an adversary A and a challenger:

1. The challenger runs (vk, sk) $←− S.KeyGen(1λ, 1ℓ) and sends vk to A.

2. A queries the challenger several times. For i = 1, 2, ... the i-th signing query is a message
x i ∈ {0, 1}ℓ. Given x i , the challenger computes σi

$←− S.Sign(sk, mi) and gives σi to the
adversary A.

3. EventuallyA outputs a candidate forgery pair (x,σ). The adversary wins if 1←− S.Verify(vk, x,σ)
and σ is not one of the signatures A has received in the signature queries.

Note that in this case A is also allowed to output a forged signature for some of the queried
messages x i in the security game. We define the advantage of an adversary A as the probability
that A wins the above game.

Definition 2.44 (su-acma). We say that a digital signature scheme is strongly unforgeable under
an adaptive chosen message attack, su-acma for short, if the advantage of this game is negligible
for all PPT adversaries.

They are similar notions of security, but it is clear that su-acma is stronger than eu-acma since
the adversary’s output space is slightly larger in the former.

A different notion would be static chosen message attack (scma), where the adversary submits
all messages x1, ... , xn before seeing the verification key vk and the corresponding signatures. This
notion can also be existential or strongly unforgeable.

Definition 2.45 (scma). We say that a digital signature scheme is scma if the advantage of the
above game is negligible for all PPT adversaries.

Micciancio and Peikert proved their variant of [Boy10] to be strongly unforgeable against static
chosen-message attack, su-scma for short, under SIS with a tighter reduction (Theorem 6.1 in
[MP12]); and then made it strongly unforgeable against adaptive chosen-message attacks, su-acma
for short, using a generic transformation through chameleon hash functions (Theorem 1 in [ST01]).

Definition 2.46 (Ideal Boyen’s signature as in [Bos+20]). Let k = dlog qe, m = 2 and —m = m+k be
the length of the public matrices, and ℓ be the length of the message. Also, let ssk =

√
log (n2) + 1

and sσ =
√

n log n ·
√

log (n2) be the standard deviations of the distributions of the signing key and
of the signature respectively.

30

• S.KeyGen: Run the algorithm GenTrap to get a vector [a | b] = [a | aR + g] ∈ R—m
q

and a trapdoor R. The public key is composed by ℓ + 1 random vectors a0, a1, ... , aℓ
$←−

Rk
q , a random u $←− Rq and the vector [a | b] and the secret key is R. (vk, sk) =

((a, b, a0, a1, ... , aℓ, u), R) $←− S.KeyGen(1λ, 1ℓ).

• S.Sign: To sign a message x = (x1, ... , xℓ) ∈ {0, 1}ℓ, the signer constructs a message-
dependent public vector ax = [a | b | a0 +

∑ℓ
i=1(−1)xi ai] and then it samples a short vector

s ∈ R—m+k
q running the algorithm SampleD on input (ax , u, R). σ = s $←− S.Sign(sk, x).

• S.Verify: It first checks that x ∈ {0, 1}ℓ. The verification algorithm checks that the vector s
has small norm, i.e., ‖s‖∞ ≤ 8sσ. Then, it constructs ax = [a | b | a0 +

∑ℓ
i=1(−1)xi ai] and

checks that s satisfies the verification equation, i.e., axs ≡ u (mod q).

Correctness follows from Lemmas 2.41, 2.42, 2.43. In [Bos+20] it is proven that this scheme is
eu-acma under R-SIS. They do it by proving that if there exists a PPT adversary A that can break
the signature scheme, we can construct an algorithm B that can solve R-SIS or R-LWE exploiting A.
Using a more technical argument, but following the same logical steps, it could also be constructed
a proof to show that this signature is strongly unforgeable.

Theorem 2.47 (Theorem 2.6, [Bos+20]). If there exists a PPT adversary A that can break the
eu-acma security of the above scheme, then there exists a PPT algorithm B that can solve either
R-SIS or R-LWE .

31

3. Voting process
Electronic voting is desired to be the modern way of conducting our democracy. One important
property behind it is that it should allow voters to vote from their personal electronic devices, which
directly will solve important problems arising while using traditional systems such as accessibility
and usability. However, some concerns may arise about its security even if machines are used in a
polling station to perform the voting process.

A typical approach for an electronic voting scheme is to combine an encryption scheme with a
digital signature scheme. The former is used for providing secrecy of the votes transmitted between
the voter and the bulletin board, in front of observers. The latter is used to ensure the integrity of
the transmitted votes, as well as providing assurance of the origin of such votes. In other words, we
desire that a malicious entity is not able to modify or forge a vote without being detected by the
system.

In this approach, voters encrypt their votes before casting them, with the idea that only the
electoral board is able to perform the necessary computations to decrypt the final tally. After
encryption and prior to casting, voters also digitally sign their votes, in order to prove later on to
the election authorities that they have been cast by eligible votes. This approach is similar to postal
voting, where the voter signs the outer envelope containing her vote. Also similarly, outer envelopes
are removed after verification of the signature so that single votes can not be related to a voter’s
identity.

Digital signature schemes allow identification of the voter who cast the vote, and therefore can
also be used in order to discern whether a voter tries to cast a vote more than once. However,
decrypted votes could still be related to the voter identities by checking the digital signature of the
encrypted votes stored in the bulletin board in the same order.

Therefore, encrypting and signing is not enough, and variants of those cryptographic primitives
should be used instead. We need a way to maintain a connection between a voter and her vote, while
at the same time this connection has to reveal nothing from the voter more than the fact that she
has the right to vote. Moreover, we want to provide votes with the property of being distinguishable
among those cast by a different voter.

3.1 Digital signatures literature
There are several variants of digital signature schemes that would partially solve the aforementioned
problem. One of those is ring signatures [RST01]. In a ring signature, a signature is produced
anonymously among a set of possible signers. Additionally, ring signatures have no group managers,
no setup procedures, no revocation procedures and no coordination: any user can choose any set of
possible signers that includes himself, and sign any message by using his secret key and the other’s
public keys, without getting their approval or assistance. This is inappropriate for e-voting protocols
because the use of this signature could led to vote selling. If a voter sets up a ring (i.e., a group
of possible singers) and a signature is produced, the signer-ambiguous property of a ring signature
ensures that the signature have been emitted by any member in the ring with the same probability.
Hence, a re-voting method can not be directly applied and then by simply showing to a third party
who you voted for before casting it is enough to sell it.

Another similar option is group signatures [CH91]. Unlike ring signatures, group signatures only
allow a member of the set of possible signers to sign on behalf of the group. Moreover, a basic
requirement of such schemes is unlinkability: given two votes and their signatures, we can not tell

32

if the signatures were from the same signer or not. This is again infeasible for our purposes.
Mesh signatures [Boy07] also look like an attractive candidate to solve our problem. They present

themselves as a direct generalization of ring signatures: instead of requiring that each and everyone
generate and publish their public key in a ring scheme, mesh signatures just need one trustworthy
certificate authority to publish their keys in the mesh scheme. However, this signatures satisfy an
analogous version of the signer-ambiguous property from ring signatures. Hence, our need seems to
lie beyond the anonymity idea in which these three signatures are based.

A more appropriate primitive are attribute-based signatures (ABS) [MPR11]. An ABS is a
versatile tool allowing a signer to anonymously authenticate a message m with respect to a public
signing policy C only if the signer has a signing key associated to an attribute5 x ∈ {0, 1}ℓ, where
ℓ ∈ N, that satisfies C (i.e., C(x) = 1). Here, the policy C will be represented as an arithmetic
circuit and distinct signing polices will be used in different elections. An attribute-based signature
scheme reveals no information on the signer’s identity or the attribute other than the fact that the
signature is valid.

It has some interesting applications in electronic voting, e.g., it guarantees that a vote has been
submitted by an elegible voter without revealing her identity. The main problem of a standard ABS
scheme for electronic voting is the non-existence of an algorithm that allow us to distinguish if two
signatures have been emitted by the same person, without revealing her attribute. This is a property
that we need to incorporate to an ABS in order to use it in an e-voting, as one of such a schemes
needs to allow voters to change their votes (in this case, by being able to vote multiple times) prior
the ending of the electoral process. In particular, this property will avoid coercion in the voting
period.

Note that an ABS does not directly show the attributes to the intended recipient and an attribute
collusion may occur (i.e., two different voters share the same set of attributes). Hence, it would be
again impossible to discern if two signatures have been cast by the same voter or not. This is the
second concern we have to deal with in order to make an ABS practical in our context.

3.2 Linkable attribute-based signature scheme
To solve both problems mentioned in the previous section, we will formally define here a linkable
attribute-based signature scheme and provide its security notions. We will provide a practical im-
plementation in Section 4. Before that, let us recall some definitions regarding arithmetic circuits.

Definition 3.1. An arithmetic circuit C over a ring R with ℓ input wires and one output wire is a
directed acyclic graph. It contains ℓ wires that come from ℓ values of the ring R respectively; called
the input wires and one wire that does not go to any node, called the output wire. All other wires
are called internal wires.

The size of an arithmetic circuit is the number of gates in it and it is typically denoted as |C |.
The depth of an arithmetic circuit C , denoted depth(C), is the length of the longest directed path
from an input wire to the output wire. For instance, In Figure 9 we have a circuit with size |C | = 6
and depth(C) = 4.

The nodes are called gates and are labelled by either + (addition) or × (product). Moreover,
the input wires are indexed by 1, ... , ℓ, the the internal wires are indexed by ℓ + 1, ... , ℓ + |C | − 1
and the output wire has index ℓ+ |C |. Here, assume that each gate takes only two incoming wires
with multiple fan-out wires, where all the fan-out wires are indexed with the same index.

5In e-voting context, we typically define attributes as a set of general characteristics about the voter’s identity.
Some examples might be location, age range, gender…The elected set of attributes will vary over distinct elections.

33

We define Cℓ to be the collection of arithmetic circuits defined over a ring R, each having ℓ input
wires. We also define the collection C = {Cℓ}ℓ∈N.

Definition 3.2 (Bounded collection). We say that the a collection of arithmetic circuits Cℓ, for a
fixed ℓ ∈ N, is bounded if for every circuit C ∈ Cℓ we have that depth(C) ≤ d , with d ∈ N.

We also specify the topology of an arithmetic circuit by a function topo : {ℓ+ 1, ... , ℓ+ |C |} →
{+,×}×{1, ... , ℓ+ |C | − 1}×{1, ... , ℓ+ |C | − 1}. Intuitively, this function maps a non-input wire
to its first and second incoming wires in which these three wires are connected by a gate, whose
label (+ or ×) is also showed in the topology. For (⋆, i1, i2) ← topo(i), we require that i1, i2 < i
where ⋆ ∈ {+,×}. For instance, in Figure 9 we have that topo(7) = (×, 1, 2), topo(11) = (×, 7, 9)
and topo(12) = (+, 10, 11).

×

x1 x2

+

x3

×

x4

+ ×

+

7 7 8 9

10 11

1 2 3 4 5 6

12

Figure 9: An arithmetic circuit with 6 input wires and 6 gates.

In what follows we formalize the notion of linkable attribute-based signature scheme. In this
definition, instead of directly taking an attribute—x ∈ {0, 1}—ℓ to generate a signing key, we will use
an extension of it. The reason behind this extension is forcing two distinct signers to use different
attributes to produce signatures, so that they can be distinguished by our algorithms. Specifically,
we will take x = [—x |—y] ∈ {0, 1}ℓ with—x ∈ {0, 1}—ℓ,—y ∈ {0, 1}—m and ℓ =—ℓ+—m. As noticed before,
an attribute collusion may occur and hence we impose that the extension part—y is distinct for every
pair of distinct signers, e.g., we could set—y to be a random number between 0 and 2—m−1. However,
note that in electronic voting the extension part—y is meaningless when we have to evaluate a public
signing policy C . Hence, in this context, the relevant part of this evaluation is where the original
attribute—x is involved (i.e., the evaluation C(x) will output 1 or 0 depending merely on—x).

In the rest of this thesis, whenever it is intended that a circuit is satisfied by an attribute and
it is not the case, the algorithm will implicitly output ⊥ (i.e., the algorithm stops and outputs
“fail”). Also, as we just deal with extension attributes from now on, we will refer to them simply as
attributes.

Definition 3.3 (Linkable attribute-based signature scheme (LABS)). A linkable attribute-based
signature scheme supporting the class of arithmetic circuits C = {Cℓ}ℓ∈N and message space {0, 1}∗
is defined by the following five algorithms:

34

• LABS.Setup: The setup algorithm takes as input the security parameter 1λ and the input
length 1ℓ of the circuits in Cℓ, and outputs the master public key mpk and the master secret
key msk. (mpk, msk) $←− LABS.Setup(1λ, 1ℓ).

• LABS.KeyGen: The signing key generation algorithm takes as input the master public key
mpk, the master secret key msk and an attribute x ∈ {0, 1}ℓ, and outputs a signing key skx .
skx

$←− LABS.KeyGen(mpk, msk, x).

• LABS.Sign: The signing algorithm takes as input the master public key mpk, a secret key
skx associated with an attribute x, a circuit C ∈ Cℓ, and a message m ∈ {0, 1}∗. It checks
that C(x) = 1 and then outputs a signature Σ. Σ

$←− LABS.Sign(mpk, skx , C , m).

• LABS.Verify: The verification algorithm takes as input the master public key mpk, a mes-
sage m, a circuit C and a signature Σ, and outputs 0 (invalid) or 1 (valid). {0, 1} ←−
LABS.Verify(mpk, m, C ,Σ).

• LABS.Link: The linking algorithm takes as input two messages m1, m2 as well as two sig-
natures Σ1,Σ2. It checks that signatures Σ1,Σ2 of messages m1, m2 are valid respectively,
(outputting ⊥ otherwise), and outputs 1 or 0 (i.e., there is a link between the signatures or
not). {0, 1} ←− LABS.Link(m1, m2,Σ1,Σ2).

We require it to satisfy the following properties:

• Correctness: Let λ, ℓ ∈ N, x ∈ {0, 1}ℓ and C ∈ Cℓ. We say that the scheme has the
correctness property if we have that C(x) = 1 and:

Pr[(mpk, msk) $←− LABS.Setup(1λ, 1ℓ); skx
$←− LABS.KeyGen(mpk, msk, x);

Σ
$←− LABS.Sign(mpk, skx , C , m) : LABS.Verify(mpk, m, C ,Σ) = 0] ∈ negl(λ)

• Linkability: Let λ, ℓ, t ∈ N with t ≥ 2. We formalize this property by the following game
between a challenger and an adversary A:

1. The challenger runs (mpk, msk) $←− LABS.Setup(1λ, 1ℓ) and gives mpk to A.
2. A outputs t attributes x1, ... , xt to the challenger. The challenger returns to A the

secret keys skx i
$←− LABS.KeyGen(mpk, msk, x i), for i = 1, ... , t.

3. Finally, A outputs t + 1 signatures (m1,Σ1), ... , (mt+1,Σt+1).

The adversary A wins the game if the following two conditions hold for some circuit C ∈ Cℓ:

(i) LABS.Verify(mpk, mi , C ,Σi) = 1 for all i ∈ [t + 1].
(ii) LABS.Link(mi , mj ,Σi ,Σj) = 0 for every i , j ∈ [t + 1].

The advantage of A is defined as the probability of A winning the above game. We say that
the scheme has the computational linkability property if the advantage of any PPT algorithm
A is negligible.

• Exculpability: Let λ, ℓ, t ∈ N with t ≥ 2. We formalize this property by the following game
between a challenger and an adversary A:

35

1. The challenger runs (mpk, msk) $←− LABS.Setup(1λ, 1ℓ) and gives mpk to A.
2. A outputs a message m an t distinct attributes x1, ... , xt along with a circuit C ∈ Cℓ

to the challenger. The challenger first checks that x i 6= x j with i 6= j , for every i , j ∈
[t] (outputting ⊥ otherwise). Then, it runs skx i

$←− LABS.KeyGen(mpk, msk, x i) for
i = 1, ... , t, and returns to A the secret keys skx1 , ... , skxt−1 along with the signature
Σ

$←− LABS.Sign(mpk, skxt , C , m).
3. At the end, A outputs a signature (m∗,Σ∗).

The adversary A wins the game if the following two conditions hold:

(i) LABS.Verify(mpk, m∗, C ,Σ∗) = 1.
(ii) LABS.Link(m, m∗,Σ,Σ∗) = 1.

The advantage of A is defined as the probability of A winning the above game. We say
that the scheme has the computational exculpability property if the advantage of any PPT
algorithm A is negligible.

On the one side, the linkability property is reflecting the fact that if t + 1 signatures are issued,
then at most t +1 signers have used the scheme to produce them. Specifically, if the same attribute
is used to create a signature of the same message or two different messages, then it will be noticed
by the LABS scheme with non-negligible probability. This property is the one that will allow us to
implement the re-voting policy in our electronic voting system by simply replacing the “old” existing
vote by the new linked one.

On the other side, the exculpability property is reflecting the other way around: if two different
attributes are used to create signatures they will never be linked. Notice that we also included the
situation where two different signers contribute each other to generate a third signature. Again, the
signatures created independently by every signer can not be linked to this new “cooperated” one.
This is a necessary condition in order to make the voting protocol consistent, since otherwise it could
happen that someone maliciously wants to re-vote and in the process another’s vote is replaced.

Note that in both the linkability and exculpability properties full power is given to the adversary.
We are giving him total freedom and every tool that is required to forge signatures. This is an strong
notion of security, since even with all this resources she should not to be able to link when signatures
are emitted by different signers and not to link when signatures are emitted by the same signer.

Additionally, as in [EKK18], we define two security notions, privacy and unforgeability, for our
linkable attribute-based signature scheme. However, we decided to differentiate between interior and
exterior privacy as it is important in our context. Roughly speaking, the former intends to not leak
any information on the signer’s attribute using the same arithmetic circuit to produce signatures by
distinct signers, and the latter intends the same but using different arithmetic circuits to produce
signatures by the same signer.

We achieve interior privacy by testing if the distribution of LABS.Sign(mpk, skx0 , C , m) is compu-
tationally indistinguishable to the distribution of LABS.Sign(mpk, skx1 , C , m) for attributes x0, x1 ∈
{0, 1}ℓ such that C(x0) = C(x1) = 1.

Definition 3.4 (Interior privacy). The security notion of interior privacy for a linkable attribute-
based signature scheme is defined by the following game between a challenger and an adversary
A:

1. The challenger runs (mpk, msk) $←− LABS.Setup(1λ, 1ℓ) and gives mpk to A.

36

2. A outputs a message m ∈ {0, 1}∗, two attribute x0, x1 ∈ {0, 1}ℓ and a circuit C ∈ Cℓ to
the challenger. The challenger first checks that C(x0) = C(x1) = 1 and then runs skx0

$←−
LABS.KeyGen(mpk, msk, x0) and skx1

$←− LABS.KeyGen(mpk, msk, x1). Then, it picks a
random bit {0, 1} $←− b and returns to A the signature Σ∗

$←− LABS.Sign(mpk, skxb , C , m).

3. A outputs a guess b′ ∈ {0, 1} for b.

The advantage of A is defined as |Pr[b′ = b]− 1/2| and we say that the attribute-based signature
scheme is computationally interiorly private if the advantage of any PPT algorithm A is negligible.

Similarly, we achieve exterior privacy by testing if the distribution of two signatures produced
with the same secret key but distinct circuits is computationally indistinguishable to the distribution
of two signatures produced with both distinct secret keys and circuits.

Definition 3.5 (Exterior privacy). The security notion of exterior privacy for a linkable attribute-
based signature scheme is defined by the following game between a challenger and an adversary
A:

1. The challenger runs (mpk, msk) $←− LABS.Setup(1λ, 1ℓ) and gives mpk to A.

2. A outputs a message m ∈ {0, 1}∗, two attributes x1, x2 ∈ {0, 1}ℓ and two circuits C1, C2 ∈ Cℓ
to the challenger. The challenger first checks that C1(x1) = C2(x1) = C2(x2) = 1 and
then runs skx i

$←− LABS.KeyGen(mpk, msk, x i) for i = 1, 2. Then, it picks a random bit
{0, 1} $←− b and proceeds as follows:

• If b = 0, the challenger returns to A signatures Σ1
$←− LABS.Sign(mpk, skx1 , C1, m)

and Σ2
$←− LABS.Sign(mpk, skx1 , C2, m).

• If b = 1, the challenger returns to A signatures Σ1
$←− LABS.Sign(mpk, skx1 , C1, m)

and Σ2
$←− LABS.Sign(mpk, skx2 , C2, m).

3. A outputs a guess b′ ∈ {0, 1} for b.

The advantage of A is defined as |Pr[b′ = b]− 1/2| and we say that the attribute-based signature
scheme is computationally exteriorly private if the advantage of any PPT algorithm A is negligible.

The second notion is adaptively unforgeability, which requires that an adversary is only able to
forge a signature with negligible probability even if she sees signatures on messages of her choice.

Definition 3.6 (Unforgeability). The security notion of adaptively unforgeable for a linkable attribute-
based signature scheme is defined by the following game between a challenger and an adversary A:

1. The challenger runs (mpk, msk) $←− LABS.Setup(1λ, 1ℓ) and gives mpk to A.

2. A may adaptively make the following queries to the challenger:

(i) Signing. A submits a signing query on any attribute, message and circuit tuple (x, m, C)
to the challenger.

– If the tuple (x, m, C) has not been previously queried, the challenger first checks
that C(x) = 1.

37

∗ If x has not been submitted previously, the challenger runs skx
$←− LABS.KeyGen(mpk, msk, x)

and sends the signature Σ
$←− LABS.Sign(mpk, skx , C , m) to A.

∗ If x has been submitted previously, the challenger just sends the signature Σ
$←−

LABS.Sign(mpk, skx , C , m) to A.
– If the tuple (x, m, C) has been previously queried, the challenger resends the signa-

ture Σ that has been previously produced with that tuple to A.
(ii) Key reveal. A submits a key reveal query on any attribute x to the challenger.

– If the attribute x has not been submitted previously, the challenger returns the
signing key skx

$←− LABS.KeyGen(mpk, msk, x) to A.
– If the attribute x has been submitted previously, the challenger resends the signing

key skx that has been previously produced with that attribute to A.

3. A outputs a signature (m∗, C∗,Σ∗)

The adversary A wins the game if the following three conditions hold:

(i) LABS.Verify(mpk, m∗, C∗,Σ∗) = Valid.

(ii) A did not submit a signing query on (x, m∗, C∗) for any x such that the challenger did not
output ⊥.

(iii) A did not submit a key reveal query for any x such that C∗(x) = 1.

The advantage of A is defined as the probability of A winning the above game. We say that the
attribute-based signature scheme is computationally adaptively unforgeable if the advantage of any
PPT algorithm A is negligible.

38

4. Generic LABS scheme
Before presenting our construction, we provide a brief overview. The main idea in the standard ABS
scheme of El Kaafarani and Katsumata [EKK18] is that the attribute authority issues a signature σ
on an attribute x ∈ {0, 1}ℓ to certify that the intended signer is allowed to sign a message on behalf
of that attribute. To sign anonymously, the signer proves the following facts in zero-knowledge: the
signature issued by the attribute authority is valid and the corresponding secret attribute satisfies the
public circuit C ∈ Cℓ attached to the message. To do so, the signer first commits to the signature
and all of the values assigned to the internal wires of the circuit C on input the attribute x. Then
he proves in zero-knowledge that the values inside the commitments satisfy Eq. (2 - 4).

However, to construct our generic LABS scheme we add some extra tools to this ABS scheme.
Namely, the signer evaluates a hash function on input her attribute x and the circuit C satisfied
by this attribute, and then proves in zero-knowledge that she is in possession of such a pair (x, C).
Then, adding both the output of this hash function and the zero-knowledge proof of possession to
the ABS signature provoke our linking algorithm to be functional, as it makes both the linkability
and exculpability properties to be satisfied.

The reason behind the use of this hash function is its properties:

• Its determinism provides to the administrator the ability to output the same hash when the
same signer intends to produce another signature.

• Its pre-image resistance gives the possibility of making every outputted hash public so it can
be used by the linking algorithm.

• Collision resistance is a key part to accomplish both the linkability and the exculpability prop-
erties. A simple look to the hash will suffice to differentiate if two signatures have been issued
by the same signer or not.

It is crucial to say that an input to this hash function will be formed by an attribute and a circuit
that is satisfied by this attribute. In this way, if a voter wants to re-vote in the same election, the
same hash will be given to her. However, if she wants to vote later in another election, a different
hash will be given to her even if the same attribute is used. From now on, we will refer as tag to
the output of this hash function as it fits better in the e-voting context.

Therefore, the tools we need to prepare are a digital signature scheme, a commitment scheme, a
ZKPoK proving the relations that are described below between committed values and a last ZKPoK
proving the well-formedness of the tag.

Before moving on, recall that in Definition 3.2 we described bounded arithmetic circuits as those
who have their depth bounded by some natural number. Nevertheless, in the context of attribute-
based signatures it is typical to say that an arithmetic circuit is bounded if the required hardness
assumptions on the R-LWE problem and/or the R-SIS problems grow exponentially in the depth
of the circuit. For instance, to base the security of the attribute-based signature scheme under
a polynomial R-LWE assumption, we might need to restrict the depth of the circuit to be O(λ),
where 1λ is the security parameter. In this context, our building block for LABS schemes support
unbounded circuits as polices, as they do not suffer from this issue.

Let xi for i ∈ [ℓ+ 1, ℓ+ |C | − 1] denote the value to the i-th internal wire of the arithmetic
circuit C on input x = (x1, ... , xℓ) and let vkSign and skSign denote the verification key and the
signing key of the underlying digital signature scheme, respectively, and let pkCom denote the public

39

commitment key of the underlying commitment scheme. Then, the relation RLABS is defined as
follows:

RLABS =
(

statement = (vkSign, pkCom, C ∈ Cℓ, cσ, (ci)ℓ+|C |−1
i=1),

witness = (x = (x1, ... , xℓ),σ, dσ, (di)ℓ+|C |−1
i=1)

)
.

The committed values in cσ, (ci)ℓ+|C |−1
i=1 satisfy the following conditions:

• (cσ, dσ) ∈ DOpen(pkCom,σ) and (ci , di) ∈ DOpen(pkCom, xi) for i ∈ [ℓ+ |C | − 1];

• S.Verify(vkSign, x,σ) = 1;

• xi = xi1 ⋆i xi2 for i ∈ [ℓ+ 1, ℓ+ |C | − 1], where (⋆i , i1, i2)← topoC (i) and ⋆i ∈ {+,×};

• 1 = x(ℓ+|C |)1 ⋆(ℓ+|C |) x(ℓ+|C |)2 , where (⋆(ℓ+|C |), (ℓ+ |C |)1, (ℓ+ |C |)2)← topoC (ℓ+ |C |).

Here, recall that DOpen(pkCom, m) is the set of all possible pairs that are labelled as valid by the
verification algorithm C.Ver(pkCom, m) under a fixed public key pkCom and a message m. We simply
define the corresponding language LLABS as the language induced by the relation RLABS.

For simplicity, in the rest of this section we omit vkSign and pkCom from the statement, since
they are fixed by the LABS.Setup algorithm and all signers use the same vkSign and pkCom.

4.1 Construction
Now, we provide our linkable attribute-based signature scheme for unbounded arithmetic circuits. In
what follows, we assume a digital signature scheme (S.KeyGen, S.Sign, S.Verify) and a commitment
scheme (C.Gen, C.Com, C.Ver).

• LABS.Setup: On input the security parameter 1λ and the input length 1ℓ for the family of
circuits Cℓ, generate a verification key and a signing key (vkSign, skSign) $←− S.KeyGen(1λ, 1ℓ)
and a public commitment key pkCom

$←− C.Gen(1λ). Then output:

mpk = (vkSign, pkCom, H(·), G(·)) and msk = (skSign);

where H(·) and G(·) are hash functions used by the algorithm LABS.Sign, which are pro-
grammed as random oracles in the security proof. Further, we assume the output space of
G(·) to be {0, 1}ℓ.

• LABS.KeyGen: On input x = (x1, ... , xℓ) ∈ {0, 1}ℓ, create a signature on the attribute x by
running σ $←− S.Sign(skSign, x). Then, output the secret key as skx = (x,σ).

• LABS.Sign: On input a message m ∈ {0, 1}∗, a secret key skx and a circuit C ∈ Cℓ with an
associating topology topoC (·) such that C(x) = 1, proceeds as follows:

1. On input the attribute x and the satisfied circuit C , compute the tag Tx ←− H(x, C)6.
2. Generate a ZKPoK π proving possession of an attribute x such that Tx ←− H(x, C).

6We assume whenever it is necessary that we can encode C uniquely into a binary string

40

3. Compute h = (h1, ... , hℓ)←− G(m, C) and create a new circuit Ĉ ∈ Cℓ with two dummy
gates connected to each of the input wires of C . Namely, to the input wires i ∈ [ℓ] of C ,
we add a series composition of two addition gates where one gate adds hi and the other
gate adds −hi . On input xi to the i-th input wire of Ĉ , it first evaluates to xi + hi and
then evaluates back to xi + hi − hi = xi , on which point it gets fed to the i-th input wire
of C . Further, let N to be the number of gates of Ĉ : N = |Ĉ | = |C |+ 2ℓ.

4. For all i ∈ [ℓ+ 1, ℓ+ N − 1] compute (⋆i , i1, i2) ←− topoĈ (i) where ⋆i ∈ {+,×}, and
denote the newly created values (xi)ℓ+N−1

i=ℓ+1 in ascending order as{
xi = xi1 + xi2 , if ⋆i = +
xi = xi1 · xi2 , if ⋆i = ×

.

5. Create a commitment (cσ, dσ) $←− C.Com(pkCom,σ) of the signature σ, and for all
i ∈ [ℓ+ N − 1], create a commitment (ci , di)

$←− C.Com(pkCom, xi) that commits to
the value of each wire in Ĉ (except for the output one).

6. Generate a ZKPoK Π proving that the committed values satisfy the relation RLABS.
Concretely, it generates a proof for the following conditions:

- The attribute (ci)ℓi=1 committed to x = (x1, ... , xℓ) and the signature cσ committed
to σ satisfy the following verification equation:

S.Verify(vkSign, x,σ) = 1. (2)

- For all i ∈ [ℓ+ 1, ℓ+ N − 1], the value ci committed to xi satisfy the following
equation: {

xi = xi1 + xi2 if ⋆i = +
xi = xi1 · xi2 if ⋆i = ×

. (3)

- The values c(ℓ+N)1 and c(ℓ+N)2 committed to x(ℓ+N)1 and x(ℓ+N)2 , respectively, satisfy
the following equation:{

1 = x(ℓ+N)1 + x(ℓ+N)2 if ⋆ℓ+N = +
1 = x(ℓ+N)1 · x(ℓ+N)2 if ⋆ℓ+N = ×

. (4)

7. Finally, output Σx = (Tx ,π, cσ, (ci)ℓ+N−1
i=1 ,Π).

• LABS.Verify: Compute h ←− G(m, C) and construct the circuit Ĉ . Then, verify the proof
Π with respect to the circuit Ĉ and the proof π with respect to the attribute x. Output 1 if
both proofs are verified correctly, and output 0 otherwise.

• LABS.Link: Given Σx1 ,Σx2 , return 1 if Tx1 = Tx2 and 0 otherwise.

Correctness. Observe that Ĉ(x) = C(x) for all m, x. Also note that if the same attribute is used to
generate a second or more signatures using the same circuit, then the tag will not vary. Therefore, the
correctness of the scheme follow simply from the correctness of the underlying commitment scheme,
digital signature scheme, the ZKPoK for the relation RLABS and the ZKPoK proving possession of
a preimage for the hash function H(·).

Lemma 4.1 (Linkability). The above LABS scheme satisfies the linkability property when the hash
function H(·) is collision resistant.

41

Proof. Assume that the adversary A submits the attributes x1, ... , xt as the challenge. The chal-
lenger responds by sending back the secret keys skx1 = (x1,σx1), ... , skxt = (xt ,σxt) associated
to these attributes. Then, the adversary has to output t + 1 signatures Σx∗

1
, ... ,Σx∗

t+1
(asso-

ciated to the messages m1, ... , mt+1) where the first two components of these signatures are
(Tx∗

1
,πx∗

1
), ... , (Tx∗

t+1
,πx∗

t+1
), respectively. The adversary A wins the game if the signatures are

verified to be valid with respect to the messages and

LABS.Link(mi , mj ,Σx i ,Σx j) = 0,

for every i , j ∈ [t + 1].
This is equivalent to test if Tx i 6= Tx j for every i , j ∈ [t + 1]. Now, since the same circuit C is

used to produce all the signatures and the collision resistance hash function H(·) produces the tags
(guaranteed by the soundness property of the ZKPoK π), it is clear that Tx i 6= Tx j if and only if
x i 6= x j . Moreover, for every i ∈ [t + 1], the soundness property of the proof Πx i implies that the
adversary A knows a signature σ′ of some attribute x ′, and the unforgeability of σ′ implies that this
signature has to be among σx1 , ... ,σx1 .

Hence, from the collision resistance of H(·) and the pigeonhole principle we obtain that there
exists two distinct i∗, j∗ ∈ [t + 1] such that x i∗ = x j∗ and then Tx i∗ = Tx i∗ . Hence, the advantage
of the adversary A of winning the linkability game is 0. ■

Lemma 4.2 (Exculpability). The above LABS scheme satisfies the exculpability property when the
hash function H(·) is collision resistant.

Proof. This proof is similar to the linkability one. Assume that the adversary A sends the attributes
x1, ... , xt and a circuit C to the challenger. The challenger responds by sending back the secret keys
skx1 , ... , skxt−1 along with the signature Σ produced with the missing secret key skxt . We denote as
Txt the tag issued in Σ. Finally, the adversary A outputs a signature Σ∗ together with the message
m∗. Similarly, we denote as Tx∗ the tag issued in Σ∗. The adversary A wins the game if Σ∗ is
verified to be valid with respect to the message m∗ and

LABS.Sign(m, m∗,Σ,Σ∗) = 1.

Again, this is equivalent to test if Txt = Tx∗ . Following the same argument as in the previous
proof, this equality holds if the attributes xt and x∗ coincide, where x∗ is an attribute from the
list x1, ... , xt−1. Hence, the advantage of the adversary A of winning the exculpability game is
negligible. ■

4.2 Security analysis
Theorem 4.3 (Interior privacy). Assuming a computationally hiding commitment scheme, compu-
tationally special HVZK proofs of knowledge for both the relation RLABS and a secure hash function
H(·); we have that the previous linkable attribute-based scheme is computationally interiorly private
in the random oracle model.

Proof. Assume that the adversary A submits (m, x0, x1, C) as the challenge, and let Ĉ be the
circuit created at Step 3 of the Sign algorithm that has N gates. In the actual game, which we
denote by Gamereal, the challenger picks a random bit b $←− {0, 1} and returns the signature
Σ∗

$←− Sign(mpk, skxb , C , m), where Σ∗ = (Txb ,π∗, c∗σ, (c∗i)ℓ+N−1
i=1 ,Π∗). Here, the proof Π∗ is the

42

actual ZKPoK created with the witness satisfying
((

Ĉ , c∗σ, (c∗i)ℓ+|C |−1
i=1

)
, (xb,σ, d∗σ, (d∗i)ℓ+|C |−1

i=1)
)
∈

RLABS as input, where σ $←− S.Sign(skSign, xb), and every commitment/opening pairs are created
by running C.Com(pkCom, ·). Recall that we omit vkSign and pkCom from the statement for simplicity.

We begin by considering the game Game−2, where the proof Π∗ is instead created by running
the zero-knowledge simulator SΠ∗ of the protocol itself. Since the ZKPoK Π∗ is assumed to be
computationally special HVZK, the proof Π∗ created in Gamereal and Game−2 are computationally
indistinguishable. Similarly, we consider the game Game−1, where now the proof π∗ is instead
created by running the zero-knowledge simulator Sπ∗ . Again, since the ZKPoK π∗ is assumed to be
computationally special HVZK, the proof π∗ created in Gamereal and Game−1 are computationally
indistinguishable. Finally, we consider the game Game0, where the tag Txb is replaced by a random
number. Hence, since H(·) is assumed to be a random oracle, the tag made in Game0 and Gamereal
are computationally indistinguishable.

Now, we consider ℓ+ N − 1 hybrid games, where in the i-th game Gamei , the challenger swaps
the commitment c∗i with a commitment to 0. Finally, the Gamei challenger outputs a challenge
signature Σ∗ = (Txb ,π∗, c∗σ, (c∗i)ℓ+N−1

i=1 ,Π∗). Due to the computationally hiding property of the
underlying commitment scheme, the view of the adversary in Gamei−1 and Gamei is negligible, for
i = −1, 0, ... , ℓ+ N − 1.

Finally, in game Gameℓ+N , the challenger swaps the commitment c∗σ with a commitment to 0.
Following the same argument as above, the differences in the view of the adversary in Gameℓ+N−1
and Gameℓ+N is negligible due to the computationally hiding property of the commitment scheme.
Furthermore, since all the commitments are now commitments to 0 in Gameℓ+N , the signature
Σ∗ = (Txb ,π∗, c∗σ, (c∗i)ℓ+N−1

i=1 ,Π∗) is completely independent of the attributes x0, x1. Therefore we
have that in Gameℓ+N , the advantage of adversary A is 0.

Combining all the games together, we have that the advantage of any adversary A winning
Gamereal is negligible. ■

Theorem 4.4 (Exterior privacy). Assuming a computationally hiding commitment scheme, compu-
tationally special HVZK proofs of knowledge for both the relation RLABS and a secure hash function
H(·); we have that the previous linkable attribute-based scheme is computationally exteriorly private
in the random oracle model.

Proof. Assume that the adversary A submits (m, x1, x2, C1, C2) as the challenge. In the actual
game, which we denote by Gamereal, the challenger picks a random bit b $←− {0, 1} and then
proceeds as follows:

• If b = 0, it returns to A the signatures

Σ1
$←− LABS.Sign(mpk, skx1 , C1, m), and Σ2

$←− LABS.Sign(mpk, skx1 , C2, m).

• If b = 1, it returns to A the signatures

Σ1
$←− LABS.Sign(mpk, skx1 , C1, m), and Σ2

$←− LABS.Sign(mpk, skx2 , C2, m).

The rest of this proof is analogous to the previous one. Namely, we define a sequence of
games in which every component of the signatures Σ1 and Σ2 are replaced by (computationally
indistinguishable) random values; in both b = 0 and b = 1. Hence, the advantage of adversary A
is again negligible as the cases are indistinguishable. ■

43

Theorem 4.5 (Adaptive unforgeability). Assume a computationally hiding and a computationally
binding commitment scheme, computationally special HVZK proofs of knowledge for the relation
RLABS and a secure hash function H(·), and an eu-acma digital signature scheme. Then, the previous
linkable attribute-based scheme is adaptively unforgeable in the random oracle model.

Proof. Note that our LABS scheme only varies with the ABS scheme defined in [EKK18] in the
computation of the tag and the generation of the ZKPoK π. Also, note that our definition for
adaptive unforgeability is equivalent. Hence, having in mind that π is assumed to be computationally
special HVZK, this proof is omitted as is analogous to Theorem 2 in [EKK18]. ■

From Lemmas 4.1 and 4.2 and Theorems 4.3, 4.4 and 4.5 we conclude that there exists an
interior private, exterior private and adaptive unforgeable linkable attribute-based signature scheme
in the random oracle model.

44

5. LABS for unbounded circuits from lattices
In this section, we provide an instantiation of our generic LABS construction for unbounded circuits
from lattices.

5.1 Preparing tools
We use the commitment scheme proposed by Martínez and Morillo [MM19] together with their
ZKPoK for proving valid openings and for proving arithmetic relations between committed values
(see Section 2.4.5). To prove in zero-knowledge that tags are computed properly (i.e., proving
knowledge of a witness (x, C) such that Tx ←− H(x, C)) we use the general ZKPoK proposed by
Jawurek et al. [JKO13]. We will comment this protocol later in this section. Finally, we use the
variant of Boyen’s signature [Bos+20] described in Section 2.4.6 as our underlying signature scheme.
From all this building block, we obtain an associating lattice-based LABS scheme for the relation
RLABS.

[MM19] provides three ZKPoK for proving useful relations among committed values: ΠOpen for
proving knowledge of a valid opening and ΠAdd, ΠMult for proving arithmetic relations (over Rq) of
committed values.
Theorem 5.1. The commitment scheme in [MM19] has associating ZKPoK (ΠOpen,ΠAdd and ΠMult
respectively) for the following three relations
ROpen = {(pk, c), (m, d) | (c, d) ∈ DOpen(pk, m)},
RAdd = {(pk, (ci)3

i=1), ((mi , di)3
i=1) | m3 = m1 + m2 ∧ (ci , di) ∈ DOpen(pk, mi) for i ∈ [3]},

RMult = {(pk, (ci)3
i=1), ((mi , di)3

i=1) | m3 = m1 ·m2 ∧ (ci , di) ∈ DOpen(pk, mi) for i ∈ [3]},
as they satisfy the properties of completeness, soundness and zero-knowledge.

These protocols are described in a low level in Section 2.4.5. The above protocols additionally
require internally an standard commitment scheme, which is used by the prover in the first round to
send a commitment to the verifier. Although, we could use the commitment scheme of [MM19], this
would not be the best idea since we would lack of efficiency. A better idea would be, for instance,
to simply use a hash function as this internal commitment algorithm: on input a message m, the
commitment c is the output of the hash function applied to the message m concatenated with a
random string, and the opening d is the random string.

In addition to these three zero-knowledge proofs, we construct two more useful ZKPoK, that
will be denoted as ΠEqTo⋆,ΠEqTo{0,1}, for proving that a commitment opens to a specific value and
a more specific one proving that a commitment opens to 0 or 1, respectively. These additional
ZKPoK will be a key part in proving Eq. (2-4), as we need to prove in zero-knowledge more complex
relations than those covered by the zero-knowledge proofs provided in Theorem 5.1. For instance,
while we can use ΠAdd or ΠMult to prove that the commitments satisfy the relation m3 = m1 ⋆m2,
where ⋆ ∈ {+,×}, we can not use any of the above ZKPoK to prove that the commitments satisfy
the relation 1 = m1 ⋆m2.
Theorem 5.2. The commitment scheme in [MM19] has associating ZKPoK for the following two
relations
REqTo⋆ = {(pk, c, m), d | (c, d) ∈ DOpen(pk, m)},
REqTo{0,1} = {(pk, c), (m ∈ {0, 1}, d) | (c, d) ∈ DOpen(pk, m)},

as they satisfy the properties of completeness, soundness and zero-knowledge.

45

Proof. First, we show how to construct a ZKPoK for the relation REqTo⋆. We follow the proof for
the relation ROpen described in [MM19]. Recall Section 2.4.5 for the idea of using masking elements
to hide the elements that compose the commitment.

Let a = (a1, ... , ak), b = (b1, ... , bk) ∈ Rk
q , a message m ∈ Rq, a random element r in Rq and

e ∈ Rk
q . The goal of the protocol is for the prover P to convince the verifier V that the commitment

c = am + br + e ∈ Rk
q , with ‖e‖ < 2κ, is a valid commitment of the public message m without

leaking any other information.
We identify a polynomial u with a vector u that has as elements the coefficients of the polynomial.

For convenience, we also identify a vector of polynomials with the concatenation of its associated
vectors.

φ : Zn
q → Rq

u = (u0, u1, ... , un−1) 7→ u = u0 + u1x + · · ·+ un−1xn−1

ϕ : Znk
q → Rk

q

u = (u0, u1, ... , unk−1) 7→ u = (φ(u0, ... , un−1), ... ,φ(un(k−1), ... , unk−1))

P first consider the vector —e = ϕ−1(e) + 2κ1nk and its binary decomposition —e =
∑κ

j=0 2j—ej ,
—ej ∈ {0, 1}nk . Then, P appends to each vector—ej a vector of bits e′′

j such that e′
j = (—ej | e

′′
j) ∈ Bnk .

Recall that Bnk ⊂ {0, 1}2nk is the set of vectors with the same number of 0 and 1’s.
Then, we have: c = am + br + e = am + br + ϕ((I ′

∑
j 2je′j)− 2κ1nk),

where I ′ = [Ink | 0nk].
Let S2nk the set of permutations over 2nk elements. Protocol 10 depicts the ZKPoK for the

relation REqTo⋆.

Completeness: It is immediate as all relations hold by construction. Note that in this case, we
check the equality ỹ +α(c + ϕ(2κ1nk))− bs̃ − ϕ(I ′Σj2j π̃−1

j (g j))
?= a(αm) instead of just asking if

the left hand side belongs to the lattice L(a). Also note that we do not mask the message m as it
is also known for the verifier V.

Soundness: If a (possible malicious) prover P̃ is able to provide accepted answers to δ rounds of
interaction with an honest verifier V with probability (q + 1

2q)δ +ϵ, where ϵ is non-negligible, then he
is able to efficiently extract a witness with probability 2(ϵ/3)3. Details on how to find valid answers
to the required number of possible challenges are skipped as they are proved in [MM19].

By the pigeonhole principle we can find commitments c1, c2, two α,α′ and two g j , g ′j that induce
accepted answers. Define ∆α = α − α′ 6= 0. The binding property ensures that openings to π̃j , ỹ
and ẽ′j are fixed. Then we have

46

a(αm) = ỹ + α(c + ϕ(2κ1nk))− bs̃ − ϕ(I ′Σj2j π̃−1
j (g j))

a(α′m) = ỹ + α′(c + ϕ(2κ1nk))− bs̃ ′ − ϕ(I ′Σj2j π̃−1
j (g ′j))

∆αc = a∆αm + b(s̃ − s̃ ′) + ϕ(I ′Σj2j π̃−1
j (g j − g ′j)−∆α2κ1nk)

c = am + b(∆−1
α (s̃ − s̃ ′)) + ϕ(I ′Σj2j π̃−1

j (∆−1
α (g j − g ′j))− 2κ1nk)

g j − αẽ′j = g ′j − α′ẽ
′
j

ẽ′j = ∆−1
α (g j − g ′j)

c = am + b(∆−1
α (s̃ − s̃ ′)) + ϕ(I ′Σj2j π̃−1

j (ẽ′j)− 2κ1nk)

As these elements come from accepted answers we know that ẽj ∈ Bnk ⊂ {0, 1}2nk and therefore
ϕ(I ′Σj2j π̃−1

j (ẽ′j)−2κ1nk) has norm smaller than 2κ. Then (m,∆−1
α (s̃−s̃ ′),ϕ(I ′Σj2j π̃−1

j (ẽ′j)−2κ1nk))
is a valid opening.
Zero-Knowledge:

Case b = 0:
ŝ $←− Rq, ĝ j

$←− Z2nk
q , π̂j

$←− S2nk

c1 = aCom(bŝ + ϕ(I ′Σj2j π̂−1
j (ĝ j))

− α(c − am + ϕ(2κ1nk)), {π̂j}j)

P reveals {ĝ j}j , {π̃j = π̂j}j ,
ỹ = bŝ+ϕ(I ′Σj2j π̂−1

j (ĝ j))−α(c−am+ϕ(2κ1nk))
s̃ = ŝ. Indistinguishable from a real conversation
with the same πj = π̂j and where ρ = ŝ−αr and
f j = π̂−1

j (ĝ j)− αe′j .

g j = πj(f j + αe′j)
= πj(π̂−1

j (ĝ j)) + πj(αe′j − αe′j)
= ĝ j

bρ+ ϕ(IΣj2j f j)
= b(ŝ − αr) + ϕ(IΣj2j(π̂−1

j (ĝ j)− αe′j))
= bŝ + ϕ(IΣj2j π̂−1

j (ĝ j))
− α(br + ϕ(IΣj2je′j))

= bŝ + ϕ(IΣj2j π̂−1
j (ĝ j))

− α(c − am + ϕ(2κ1nk))

Case b = 1:
ê′j

$←− Bnk , f̂ j
$←− Z2nk

q π̂j
$←− S2nk

c2 = aCom({π̂j(ê′j)}j , {π̂j(f̂ j)}j)

ĝ j = π̂j(f̂ j + αê′j)

P reveals {ĝ j}j , {ẽ′j = π̂j(ê′j)}j . Equivalent
to an honest conversation were πj is such that
πj(e′j) = π̂j(ê′j) and f j is such that f j = π−1

j (π̂j(f̂ j)).

g j = πj(f j + αe′j)

= πj(π−1
j (π̂j(f̂ j))) + απ̂j(ê′j)

= π̂j(f̂ j + αê′j)

Notice that in both cases simulated conversations follow the same distribution as honest conver-
sations.

47

P((a, b), c; m, r , e) V((a, b), c; m)
π0,π1, ... ,πκ

$←− S2nk

f 0, f 1, ... , f κ
$←− Z2nk

q

ρ
$←− Rq

(c1, d1) = aCom
(
bρ+ ϕ(I ′Σj2j f j), {πj}j

)
(c2, d2) = aCom

(
{πj(e′

j)}j , {πj(f j)}j
)

c1, c2

α
$←− Zq

α

g j = πj(f j + αe′
j)

{g j}j

b $←− {0, 1}
b

if b = 0
π̃j = πj
ỹ = bρ+ ϕ(I ′Σj2j f j)
s̃ = ρ+ αr
d̃ = d1

ans = ({π̃j}j , ỹ , s̃, d̃)
if b = 1

ẽ′
j = πj(e′

j)
d̃ = d2

ans = ({ẽ′
j}j , d̃)

ans

if b = 0
1 ?←− aVer((ỹ , {π̃j}j), c1, d̃)

ỹ + α(c + ϕ(2κ1nk))− bs̃ − ϕ(I ′Σj2j π̃−1
j (g j))

?= a(αm)

if b = 1
1 ?←− aVer(({ẽ′

j}j , {g j − αẽ′
j}j), c2, d̃)

ẽ′
j

?
∈ Bnk

Protocol 10: ZKPoK for the relation REqTo⋆.

Now, we show how to construct a ZKPoK for the relation REqTo{0,1}. As in the previous relation,
we want to prove in zero-knowledge that c = am + br + e opens to a value; but in this case we
want this value to be 0 or 1. Protocol 11 depicts the ZKPoK for the relation REqTo{0,1}.

Completeness: It is immediate as all relations hold by construction. Note that in this case, we
check the equality ỹ +α(c + ϕ(2κ1nk))− a(σ̃−1(h))1− bs̃ − ϕ(I ′Σj2j π̃−1

j (g j))
?= 0 as we again do

not have exact knowledge of the message, but we know that it has to be a bit.

Soundness: Again, if a (possible malicious) prover P̃ is able to provide accepted answers to δ rounds
of interaction with an honest verifier V with probability (q + 1

2q)δ + ϵ, where ϵ is non-negligible, then
he is able to efficiently extract a witness with probability 2(ϵ/3)3.

48

By the pigeonhole principle we can find commitments c1, c2, two α,α′ and two g j , g ′j , h, h′ that
induce accepted answers. Define ∆α = α− α′ 6= 0. The binding property ensures that openings to
π̃j , σ̃, ỹ , ẽ′j and m̃ are fixed. Then we have

0 = ỹ + α(c + ϕ(2κ1nk))− a(σ̃−1(h))1 − bs̃ − ϕ(I ′Σj2j π̃−1
j (g j))

0 = ỹ + α′(c + ϕ(2κ1nk))− a(σ̃−1(h′))1 − bs̃ ′ − ϕ(I ′Σj2j π̃−1
j (g ′j))

∆αc = a(σ̃−1(h − h′))1 + b(s̃ − s̃ ′) + ϕ(I ′Σj2j π̃−1
j (g j − g ′j)−∆α2κ1nk)

c = a(σ̃−1(∆−1
α (h − h′)))1 + b(∆−1

α (s̃ − s̃ ′)) + ϕ(I ′Σj2j π̃−1
j (∆−1

α (g j − g ′j))− 2κ1nk)
g j − αẽ′j = g ′j − α′ẽ

′
j

ẽ′j = ∆−1
α (g j − g ′j)

h − αm̃ = h′ − α′m̃
m̃ = ∆−1

α (h − h′)
c = a(σ̂−1(m̃))1 + b(∆−1

α (s̃ − s̃ ′)) + ϕ(I ′Σj2j π̃−1
j (ẽ′j)− 2κ1nk)

As these elements come from accepted answers we know that ẽj ∈ Bnk ⊂ {0, 1}2nk and therefore
ϕ(I ′Σj2j π̃−1

j (ẽ′j) − 2κ1nk) has norm smaller than 2κ. For the same reason m̃ ∈ B1 ⊂ {0, 1}2, and
therefore (σ̂−1(m̃))1 is a bit. Then ((σ̂−1(m̃))1,∆−1

α (s̃ − s̃ ′),ϕ(I ′Σj2j π̃−1
j (ẽ′j) − 2κ1nk)) is a valid

opening.

49

P((a, b), c; m ∈ {0, 1}, r , e) V((a, b), c; m ∈ {0, 1})
π0,π1, ... ,πκ

$←− S2nk

σ
$←− S2

f 0, f 1, ... , f κ
$←− Z2nk

q

µ = (µ1,µ2) $←− Z2
q

ρ
$←− Rq

(c1, d1) = aCom
(
σ, aµ1 + bρ+ ϕ(I ′Σj2j f j), {πj}j

)
(c2, d2) = aCom

(
σ(µ),σ((m, 1−m)), {πj(e′

j)}j , {πj(f j)}j
)

c1, c2

α
$←− Zq

α

g j = πj(f j + αe′
j)

h = σ(µ+ α(m, 1−m))
{g j}j , h

b $←− {0, 1}
b

if b = 0
π̃j = πj
σ̃ = σ

ỹ = aµ1 + bρ+ ϕ(I ′Σj2j f j)
s̃ = ρ+ αr
d̃ = d1

ans = ({π̃j}j , σ̃, ỹ , s̃, d̃)
if b = 1

ẽ′
j = πj(e′

j)
m̃ = σ((m, 1−m))
d̃ = d2

ans = ({ẽ′
j}j , m̃, d̃)

ans

if b = 0
1 ?←− aVer((ỹ , σ̃, {π̃j}j), c1, d̃)

ỹ + α(c + ϕ(2κ1nk))− a(σ̃−1(h))1 − bs̃ − ϕ(I ′Σj2j π̃−1
j (g j))

?= 0

if b = 1
1 ?←− aVer(({ẽ′

j}j , {g j − αẽ′
j}j , m̃, h − αm̃), c2, d̃)

ẽ′
j

?
∈ Bnk , m̃

?
∈ B1

Protocol 11: ZKPoK for the relation REqTo{0,1}.

50

Zero-Knowledge:

Case b = 0:
ŝ $←− Rq, ĝ j

$←− Z2nk
q , ĥ $←− Z2

q

π̂j
$←− S2nk , σ̂

$←− S2

c1 = aCom(σ̂, a(σ̂−1(ĥ))1 + bŝ
+ϕ(I ′Σj2j π̂−1

j (ĝ j))− α(c + ϕ(2κ1nk)), {π̂j}j)

P reveals {ĝ j}j , ĥ, {π̃j = π̂j}j , {σ̃ = σ̂}j , ỹ =
a(σ̂−1(ĥ))1 + bŝ + ϕ(I ′Σj2j π̂−1

j (ĝ j))
−α(c +ϕ(2κ1nk)), s̃ = ŝ. Indistinguishable from
a real conversation with the same πj = π̂j , σ = σ̂

and where µ = σ̂−1(ĥ)−α(m, 1−m), ρ = ŝ−αr
and f j = π̂−1

j (ĝ j)− αe′j .

g j = πj(f j + αe′j)
= πj(π̂−1

j (ĝ j)) + πj(αe′j − αe′j)
= ĝ j

h = σ(µ+ α(m, 1−m)))
= σ(σ̂−1(ĥ))
= ĥ

aµ1 + bρ+ ϕ(IΣj2j f j) =
= a(σ̂−1(ĥ)− α(m, 1−m))1

+ b(ŝ − αr)
+ ϕ(IΣj2j(π̂−1

j (ĝ j)− αe′j))

= a(σ̂−1(ĥ))1 + bŝ + ϕ(IΣj2j π̂−1
j (ĝ j))

− α(am + br + ϕ(IΣj2je′j))

= a(σ̂−1(ĥ)1 + bŝ + ϕ(IΣj2j π̂−1
j (ĝ j))

− α(c + ϕ(2κ1nk))

Case b = 1:
ê′j

$←− Bnk , m̂ $←− B1, f̂ j
$←− Z2nk

q

µ̂
$←− Z2

q, π̂j
$←− S2nk , σ̂

$←− S2

c2 = aCom(σ̂(µ̂), σ̂(m̂), {π̂j(ê′j)}j , {π̂j(f̂ j)}j)

ĝ j = π̂j(f̂ j + αê′j), ĥ = σ̂(µ̂+ αm̂)

P reveals {ĝ j}j , ĥ, {ẽ′j = π̂j(ê′j)}j , m̃ = σ̂(m̂).
Equivalent to an honest conversation were πj is
such that πj(e′j) = π̂j(ê′j), f j is such that f j =
π−1

j (π̂j(f̂ j)), σ is such that σ((m, 1 − m)) =
σ̂(m̂) and µ is such that µ = σ−1(σ̂(µ̂)).

g j = πj(f j + αe′j)

= πj(π−1
j (π̂j(f̂ j))) + απ̂j(ê′j)

= π̂j(f̂ j + αê′j)
= ĝ j

h = σ(µ+ α(m, 1−m))
= σ(σ−1(σ̂(µ̂))) + ασ̂(m̂)
= σ̂(µ̂+ αm̂)

Notice that in both cases simulated conversations follow the same distribution as honest conver-
sations.

All omitted commitments are computed as commitments to 0, and are indistinguishable from
honestly computed commitments by the hiding property of the auxiliary commitment scheme. ■

Remark 5.3. The ZKPoK provided in Theorem 5.1 and 5.2 can be composed in parallel to obtain a
protocol for larger relations, e.g., provided with commitments (ci)4

i=1 of the values (mi)4
i=1 satisfying

m4 =
∑3

i=1 mi , we can prove this relation by creating one extra auxiliary commitment caux for
maux = m1 + m2 and running two ΠAdd in parallel for the statement pairs (pk, c1, c2, caux) and
(pk, caux , c3, c4).

51

5.2 ZKPoK for the LABS relation
To instantiate the generic LABS construction in Section 4 from lattices, it is sufficient to prove that
the digital signature scheme from Section 2.4.6 and the commitment scheme from Section 2.4.5 are
equipped with a ZKPoK for the relation RLABS and a ZKPoK proving possession of hash inputs.

The ZKPoK π is obtained by running the protocol by Jawurek et al. [JKO13], where they provide
an efficient zero-knowledge proof for generic languages. In particular, they are able to construct a
protocol that is able to prove (in zero-knowledge) efficiently statements such as “I know x such that
y = SHA-256(x)” for a common input y . To this end, they make use of garbled circuits, a tool that
enables to solve the problem of two-party computation (2PC). In the problem of 2PC (introduced
by Yao in [Yao82]), two parties hold secret inputs x1 and x2 respectively and want to jointly compute
some function z = f (x1, x2) while keeping their inputs secret. Note that zero-knowledge proofs are
a proper subset of 2PC: ZKPoK are instances of 2PC where there is an asymmetry between the
parties and only the prover P holds an input w (the witness) and where the function f (w) outputs
accept iff w is a valid witness for x (here, x is a common input to both P and V).

From a high-level point of view, Jawurek et al. [JKO13] protocols works as follows: the verifier
V and the prover P run Yao’s protocol, where V acts as the circuit constructor and P acts as the
circuit evaluator. After the evaluation, P sends to V the output key. The security of Yao’s protocol
implies that a computationally bounded prover P can not guess the output key unless she has a
valid witness for y .

Therefore, to instantiate our LABS we only remain to provide a ZKPoK for the relation RLABS.
Below we aim at construction a ZKPoK for proving Eq. (2-4) in our LABS construction, where

the attribute x and Boyen’s variant signatures σ are commited using the commitment scheme of
[MM19].

Taking Remark 5.3 into consideration, a ZKPoK for proving Eq. (3) and (4), which are essentially
proving that the circuit is computed correctly, can be constructed by simply composing the ZKPoK
ΠEqTo⋆,ΠAdd,ΠMult in parallel. Specifically, we use ΠAdd,ΠMult to prove that we computed each
gate correctly, and use ΠEqTo⋆ to prove that the value associated to the output wire is equal to
1. Then, we only need to focus on how to construct a ZKPoK for proving Eq. (2), i.e., proving
possession of a valid Boyen’s variant signature.

To summarize, our goal is to construct a ZKPoK for proving possesion of a valid Boyen’s variant
signature (described in Section 2.4.6) σ = s = (s1, ... , s—m+k) ∈ R—m+k

q , where x = (x1, ... , xℓ) ∈
{0, 1}ℓ is viewed as the message, provided the verification key vkSign and the commitments to the
signature σ and message x. Then, since the protocols in Theorem 5.1 and Theorem 5.2 allows
for parallel composition, our desired ZKPoK for the relation RLABS is obtained by composing the
protocol for the Boyen’s variant signature with the protocols for Eq. (3) and (4) together. Below,
we assume the commitment cσ of the signature is provided in the form (—ch)h∈[—m+k] where each—ch
is a commitment of the h-th element of s, and the commitment cx of the message is provided in
the form (c i)i∈[ℓ] where each c i is a commitment of the value xi ∈ {0, 1}.

Now, due to the verification algorithm of the Boyen’s variant signature scheme, proving a sig-
nature is valid is equivalent to prove that the following three statements hold:

x ∈ {0, 1}ℓ ⇐⇒ xi ∈ {0, 1} for i ∈ [ℓ], (5)

‖s‖∞ ≤ 8sσ ⇐⇒ ‖sj‖∞ ≤ 8sσ for j ∈ [—m + k], (6)

52

[
a | b | a0 +

ℓ∑
i=1

(−1)xi ai

]
s ≡ u (mod q). (7)

Below we construct ZKPoK respectively for the above equations by converting each of them into
an arithmetic circuit, and using the ZKPoK provided in Theorem 5.1 and Theorem 5.2 as building
blocks to prove the satisfiability of each circuit.
ZKPoK for proving Eq. (5). It is sufficient to prove that for every i ∈ [ℓ], the commitment
c i

$←− C.Com(pk, xi) opens to either 0 or 1. To that end, it is enough by using the ZKPoK
ΠEqTo{0,1}, as the functionality of the protocol ΠEqTo{0,1} is precisely the objective of Eq. (5).

ZKPoK for proving Eq. (6). Here, for simplicity of the protocol, we assume that 8sσ can be
written as 2ζ − 1 for some positive integer ζ. Equivalently, ζ = log(8sσ + 1).

First, we prepare some notations. For j ∈ [—m + k], let s j,h ∈ {0, 1}n be the h-th vector of bits
of the binary decomposition of sj ∈ Rq for h ∈ [ζ] and let s i

j,h ∈ {0, 1} denote the i-th component
of s j,h for i ∈ [n]. Further, we set w j,h = 2h−1s j,h for h ∈ [ζ] and w j,[h′] =

∑h′

h=1 w j,h for h′ ∈ [ζ],
where w j,[1] = w j,1.

Next, we create the following auxiliary commitments for j ∈ [—m + k]:

czero
$←− C.Com(pk, 0), ccoeff,h

$←− C.Com(pk, 2h−1), —c i
j,h

$←− C.Com(pk, s i
j,h)

—c j,h
$←− C.Com(pk,φ(s j,h)), aj,h

$←− C.Com(pk,φ(w j,h)), aj,[h′]
$←− C.Com(pk,φ(w j,[h′]))

for h ∈ [ζ] and h′ ∈ [ζ].
Then, using the commitments (—ch)h∈[—m+k], the auxiliary commitments and composing the

ZKPoK ΠEqTo⋆,ΠEqTo{0,1},ΠAdd and ΠMult together, we construct a ZKPoK for the following state-
ments for all j ∈ [—m + k], h ∈ [ζ] and h′ ∈ [ζ]:

czero opens to 0 ∧ ccoeff,h opens to 2h−1 ∧ —c i
j,h opens to 0 or 1 ∧ s j,h = (s1

j,h, ... , sn
j,h) ∧

w j,h = 2h−1 · s j,h ∧ w j,[h′] = w j,h′ + w j,[h′−1] ∧ 0 = φ−1(sj)−w j,[ζ].

We check that the above statement is equivalent to Eq. (6). The above statements proves that s j,h ∈
{0, 1}n. Furthermore, when s j,h ∈ {0, 1}n, we have ‖sj‖∞ ≤

∑ζ
h=1 2h−1‖s j,h‖∞ ≤

∑ζ
h=1 2h−1 =

2ζ − 1 = 8sσ. Therefore, if the above statement holds, then we must have ‖sj‖∞ ≤ 8sσ for all
j ∈ [—m + k].

ZKPoK for proving Eq. (7). We first prepare some notations. Let aj (resp., ai ,j) denote the j-th
(resp., (j −m)-th) entry of a (resp. ai), for j ∈ [m] (resp. j ∈ [m + 1,—m]) and i ∈ [0, ℓ]. Similarly,
let bj denote the (j −—m)-th entry of b, for j ∈ [—m + 1,—m + k]. Then, observe that we can rewrite
Eq. (7) using the following equations:

m∑
j1=1

aj1 · sj1 +
—m∑

j2=m+1
bj2 · sj2 +

—m+k∑
j3=—m+1

(
a0,j3 +

ℓ∑
i=1

(−1)xi · ai ,j3

)
· sj3 = u. (8)

Next, we prepare some auxiliary values in order to prove the above equation composing the
ZKPoK ΠEqTo⋆,ΠEqTo{0,1},ΠAdd and ΠMult together:

53

Firstly, we prepare values for the third component of the sum in Eq. 8:

yi = (−1)xi ,
wi ,j3 = yi · ai ,j3 ,

w[i ′],j3 = Σi ′
i=1wi ,j3 , (where w[1],j3 = w1,j3), and

aj3 = a0,j3 + w[ℓ],j3 ,

for i , i ′ ∈ [ℓ], j3 ∈ [—m + 1,—m + k].
Secondly, we combine them all by forming the values:

vj = aj · sj , for j ∈ [m] ∪ [—m + 1,—m + k],
vj = bj · sj , for j ∈ [m + 1,—m],

v[j′] = Σj′
j1=1vj1 , for j ′ ∈ [m], (where v[1] = v1),

v[j′] = Σj′
j2=m+1vj2 , for j ′ ∈ [m + 1,—m], (where v[m+1] = vm+1), and

v[j′] = Σj′
j3=—m+1vj3 , for j ′ ∈ [—m + 1,—m + k], (where v[—m+1] = v—m+1).

Finally, we sum up them all by forming t = v[m] + v[—m] + v[—m+k].
Next, we create auxiliary commitments for the related values:

cmat,j1 ←− C.Com(pk, aj1), cmat,j2 ←− C.Com(pk, bj2), cmat,i ,j3 ←− C.Com(pk, ai ,j3),

for i ∈ [0, ℓ], j1 ∈ [m], j2 ∈ [m + 1,—m] and j3 ∈ [—m + 1,—m + k].

ωi ,j3 ←− C.Com(pk, wi ,j3), ω[i ′],j3 ←− C.Com(pk, w[i ′],j3), αj3 ←− C.Com(pk, aj3),

for i ∈ [ℓ], i ′ ∈ [2, ℓ] and j3 ∈ [—m + 1,—m + k].

ψi ←− C.Com(pk, yi), ,νj ←− C.Com(pk, vj), ν[j′] ←− C.Com(pk, v[j′]),

for i ∈ [ℓ], j ∈ [—m + k] and j ′ ∈ [2, m] ∪ [m + 2,—m] ∪ [—m + 2,—m + k].
Then, using the commitments (c i)ℓi=1, (—ch)h∈[—m+k], the auxiliary commitments and composing

the ZKPoK ΠEqTo⋆,ΠEqTo{0,1},ΠAdd and ΠMult together, we construct a ZKPoK for the following
statement for all , i ∈ [ℓ], i ′ ∈ [2, ℓ], j1 ∈ [m], j2 ∈ [m + 1,—m], j3 ∈ [—m + 1,—m + k], j ∈ [—m + k], j ′ ∈
[2, m] ∪ [m + 2,—m] ∪ [—m + 2,—m + k]:

czero opens to 0 ∧ cmat,j1 , cmat,j2 , cmat,0,j3 , cmat,i ,j3 opens to as,j , bs,j , a0,j , ai ,j ∧
yi = (−2) · xi + 1 ∧ wi ,j3 = yi · ai ,j3 ∧ w[i ′],j3 = wi ′,j3 + w[i ′−1],j3 ∧ aj3 = a0,j3 + w[ℓ],j3 ∧

vj = aj ·sj ∧ v[j′] = vj′ + v[j′−1] ∧ t = v[m] + v[—m] + v[—m+k] ∧ 0 = u − t

The above statement can be checked that is equivalent to proving Eq. (8).
ZKPoK for RLABS. To summarize, we obtain a ZKPoK for proving possession of a valid Boyen’s
variant signature by composing the ZKPoK for proving Eq. (5 - 7) together. Then, by composing
this ZKPoK with the aforementioned ZKPoK for proving Eq. (3) and (4), we obtain our desired
ZKPoK for the relation RLABS. Thus, we obtain our lattice-based LABS scheme for unbounded
circuits by instantiating the generic LABS construction in Section 4 with our ZKPoK for RLABS.

54

6. Conclusions
Quantum computers may become a technological reality, so it is important to start basing the security
of our communications (in terms of privacy, efficiency and so on) on post-quantum assumptions.
Inside post-quantum cryptography, lattice-based cryptography is one of the most promising areas of
research in cryptography.

In this thesis we have presented a new protocol useful to build an electronic voting scheme. This
protocol allows election administrators to solve both problem of distinguishing if vote signatures
have been issued by the same voter, and the problem of distinguishing if vote signatures are emitted
by different voters, while at the same time preserving the anonymity of the voters.

We have equipped a standard attribute-based signature scheme with an additional linking algo-
rithm and the definition of the linkability and exculpability properties that all together would solve
the above problems. We also have defined two security notions, namely internal and external privacy,
that fulfills the objective of electronic voting.

Moreover, we have constructed a general LABS schemes supporting unbounded circuits as po-
lices. To do so, first we have associated a tag (i.e., the output of a hash function) to each voter
together with a ZKPoK proving possession of a preimage for this hash function, and secondly we
have proved that this general construction satisfies both the properties and the security notions
mentioned in the previous paragraph.

Last but not least, we have provided an instantiation of our generic LABS for unbounded circuits
from lattices in the random oracle model. We have created two ZKPoK based on the ones by
Martínez and Morillo [MM19], and we have combined all these zero-knowledge proofs to prove in
zero-knowledge that the Boyen’s variant signature of the attribute is valid and the corresponding
secret attribute satisfies the public signing policy.

This thesis intends to be a small contribution to the research area of lattice-based cryptography,
and even if it has been developed for several years, this is still a very recent area of research for
which there is still a lot of work to do.

55

References
[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post Quantum Cryptogra-

phy. 1st. Springer Publishing Company, Incorporated, 2008. isbn: 3540887016.
[Ben+14] Fabrice Benhamouda et al. Efficient Zero-Knowledge Proofs for Commitments from

Learning With Errors over Rings. Cryptology ePrint Archive, Report 2014/889. https:
//eprint.iacr.org/2014/889. 2014.

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. “Towards practical lattice-based one-
time linkable ring signatures”. In: Information and communications security. Vol. 11149.
Lecture Notes in Comput. Sci. Springer, Cham, 2018, pp. 303–322. doi: 10.1007/978-
3-030-01950-1_1. url: https://doi.org/10.1007/978-3-030-01950-1_1.

[Bos+20] Cecilia Boschini et al. “Efficient Post-quantum SNARKs for RSIS and RLWE and Their
Applications to Privacy”. In: Post-Quantum Cryptography. Ed. by Jintai Ding and Jean-
Pierre Tillich. Cham: Springer International Publishing, 2020, pp. 247–267. isbn: 978-
3-030-44223-1.

[Boy07] Xavier Boyen. “Mesh signatures: how to leak a secret with unwitting and unwilling
participants”. In: Advances in cryptology—EUROCRYPT 2007. Vol. 4515. Lecture Notes
in Comput. Sci. Springer, Berlin, 2007, pp. 210–227. doi: 10.1007/978-3-540-72540-
4_12. url: https://doi.org/10.1007/978-3-540-72540-4_12.

[Boy10] Xavier Boyen. “Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more”. In: Public key cryptography—PKC 2010. Vol. 6056. Lecture
Notes in Comput. Sci. Springer, Berlin, 2010, pp. 499–517. doi: 10.1007/978-3-642-
13013-7_29. url: https://doi.org/10.1007/978-3-642-13013-7_29.

[CH91] David Chaum and Eugène van Heyst. “Group Signatures”. In: Advances in Cryptology
— EUROCRYPT ’91. Ed. by Donald W. Davies. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1991, pp. 257–265. isbn: 978-3-540-46416-7.

[EKK18] Ali El Kaafarani and Shuichi Katsumata. “Attribute-based signatures for unbounded cir-
cuits in the ROM and efficient instantiations from lattices”. In: Public-key cryptography—
PKC 2018. Part II. Vol. 10770. Lecture Notes in Comput. Sci. Springer, Cham, 2018,
pp. 89–119. doi: 10.1007/978-3-319-76581-5_4. url: https://doi.org/10.
1007/978-3-319-76581-5_4.

[FS87] Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identification
and signature problems”. In: Advances in cryptology—CRYPTO ’86 (Santa Barbara,
Calif., 1986). Vol. 263. Lecture Notes in Comput. Sci. Springer, Berlin, 1987, pp. 186–
194. doi: 10.1007/3-540-47721-7_12. url: https://doi.org/10.1007/3-540-
47721-7_12.

[GM18] Nicholas Genise and Daniele Micciancio. “Faster Gaussian sampling for trapdoor lat-
tices with arbitrary modulus”. In: Advances in cryptology—EUROCRYPT 2018. Part I.
Vol. 10820. Lecture Notes in Comput. Sci. Springer, Cham, 2018, pp. 174–203. doi:
10.1007/978-3-319-78381-9_7. url: https://doi.org/10.1007/978-3-319-
78381-9_7.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996. arXiv:
quant-ph/9605043 [quant-ph].

56

https://eprint.iacr.org/2014/889
https://eprint.iacr.org/2014/889
https://doi.org/10.1007/978-3-030-01950-1_1
https://doi.org/10.1007/978-3-030-01950-1_1
https://doi.org/10.1007/978-3-030-01950-1_1
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://arxiv.org/abs/quant-ph/9605043

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-Knowledge Using Gar-
bled Circuits: How To Prove Non-Algebraic Statements Efficiently. Cryptology ePrint
Archive, Report 2013/073. 2013. url: https://eprint.iacr.org/2013/073.

[Kno19] Heiko Knospe. A course in cryptography. Vol. 40. Pure and Applied Undergraduate
Texts. American Mathematical Society, Providence, RI, 2019, pp. xvii+323. isbn: 978-
1-4704-5055-7.

[LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. “Factoring polynomials with rational
coefficients”. In: Math. Ann. 261.4 (1982), pp. 515–534. issn: 0025-5831. doi: 10.
1007/BF01457454. url: https://doi.org/10.1007/BF01457454.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. “Generalized compact knapsacks are col-
lision resistant”. In: Automata, languages and programming. Part II. Vol. 4052. Lecture
Notes in Comput. Sci. Springer, Berlin, 2006, pp. 144–155. doi: 10.1007/11787006_
13. url: https://doi.org/10.1007/11787006_13.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and learning
with errors over rings”. In: J. ACM 60.6 (2013), Art. 43, 35. issn: 0004-5411. doi:
10.1145/2535925. url: https://doi.org/10.1145/2535925.

[Mic07] Daniele Micciancio. “Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions”. In: Comput. Complexity 16.4 (2007), pp. 365–411. issn: 1016-3328.
doi: 10.1007/s00037-007-0234-9. url: https://doi.org/10.1007/s00037-
007-0234-9.

[MM19] Ramiro Martínez and Paz Morillo. RLWE-based Zero-Knowledge Proofs for linear and
multiplicative relations. Cryptology ePrint Archive, Report 2019/1486. https://eprint.
iacr.org/2019/1486. 2019.

[MOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied
cryptography. CRC Press Series on Discrete Mathematics and its Applications. With a
foreword by Ronald L. Rivest. CRC Press, Boca Raton, FL, 1997, pp. xxviii+780. isbn:
0-8493-8523-7.

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for lattices: simpler, tighter, faster,
smaller”. In: Advances in cryptology—EUROCRYPT 2012. Vol. 7237. Lecture Notes in
Comput. Sci. Springer, Heidelberg, 2012, pp. 700–718. doi: 10.1007/978-3-642-
29011-4_41. url: https://doi.org/10.1007/978-3-642-29011-4_41.

[MP18] Ramiro Martínez Pinilla. “Fully post-quantum protocols for e-voting, coercion resistant
cast as intended and mixing networks”. PhD thesis. Jan. 2018. doi: 10.13140/RG.2.
2.35061.27363.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. “Attribute-based signatures”.
In: Topics in cryptology—CT-RSA 2011. Vol. 6558. Lecture Notes in Comput. Sci.
Springer, Heidelberg, 2011, pp. 376–392. doi: 10.1007/978-3-642-19074-2_24.
url: https://doi.org/10.1007/978-3-642-19074-2_24.

[MR07] Daniele Micciancio and Oded Regev. “Worst-case to average-case reductions based
on Gaussian measures”. In: SIAM J. Comput. 37.1 (2007), pp. 267–302. issn: 0097-
5397. doi: 10 . 1137 / S0097539705447360. url: https : / / doi . org / 10 . 1137 /
S0097539705447360.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based cryptography”. In: Post-quantum
cryptography. Springer, Berlin, 2009, pp. 147–191. doi: 10.1007/978-3-540-88702-
7_5. url: https://doi.org/10.1007/978-3-540-88702-7_5.

57

https://eprint.iacr.org/2013/073
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://doi.org/10.1007/s00037-007-0234-9
https://doi.org/10.1007/s00037-007-0234-9
https://doi.org/10.1007/s00037-007-0234-9
https://eprint.iacr.org/2019/1486
https://eprint.iacr.org/2019/1486
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.13140/RG.2.2.35061.27363
https://doi.org/10.13140/RG.2.2.35061.27363
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5

[Pei14] Chris Peikert. “A decade of lattice cryptography”. In: Found. Trends Theor. Comput.
Sci. 10.4 (2014), pp. i–iii, 283–424. issn: 1551-305X. doi: 10.1561/0400000074. url:
https://doi.org/10.1561/0400000074.

[PR06] Chris Peikert and Alon Rosen. “Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices”. In: Theory of cryptography. Vol. 3876. Lecture Notes in
Comput. Sci. Springer, Berlin, 2006, pp. 145–166. doi: 10.1007/11681878_8. url:
https://doi.org/10.1007/11681878_8.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic
curves. 2003. arXiv: quant-ph/0301141 [quant-ph].

[Qui+90] Jean-Jacques Quisquater et al. “How to Explain Zero-Knowledge Protocols to Your Chil-
dren”. In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard.
New York, NY: Springer New York, 1990, pp. 628–631. isbn: 978-0-387-34805-6.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to leak a secret”. In: Advances
in cryptology—ASIACRYPT 2001 (Gold Coast). Vol. 2248. Lecture Notes in Comput.
Sci. Springer, Berlin, 2001, pp. 552–565. doi: 10.1007/3-540-45682-1_32. url:
https://doi.org/10.1007/3-540-45682-1_32.

[Sho99] Peter W. Shor. “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer”. In: SIAM Rev. 41.2 (1999), pp. 303–332. issn: 0036-
1445. doi: 10 . 1137 / S0036144598347011. url: https : / / doi . org / 10 . 1137 /
S0036144598347011.

[ST01] Adi Shamir and Yael Tauman. “Improved online/offline signature schemes”. In: Advances
in cryptology—CRYPTO 2001 (Santa Barbara, CA). Vol. 2139. Lecture Notes in Com-
put. Sci. Springer, Berlin, 2001, pp. 355–367. doi: 10.1007/3-540-44647-8_21. url:
https://doi.org/10.1007/3-540-44647-8_21.

[Yao82] Andrew C. Yao. “Protocols for secure computations”. In: 23rd annual symposium on
foundations of computer science (Chicago, Ill., 1982). IEEE, New York, 1982, pp. 160–
164.

58

https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8
https://arxiv.org/abs/quant-ph/0301141
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/3-540-44647-8_21
https://doi.org/10.1007/3-540-44647-8_21

	Introduction
	Electronic voting structure and goals
	Quantum computing
	Thesis structure

	Preliminaries
	Notation
	Cryptographic primitives
	Trapdoor functions
	Commitment schemes
	Digital signatures

	Zero-knowledge proofs
	Lattices
	Introduction to lattices
	Lattice problems
	Ideal lattices
	Trapdoors from lattices
	R-LWE based commitment scheme
	R-SIS based signature scheme

	Voting process
	Digital signatures literature
	Linkable attribute-based signature scheme

	Generic LABS scheme
	Construction
	Security analysis

	LABS for unbounded circuits from lattices
	Preparing tools
	ZKPoK for the LABS relation

	Conclusions

