fflon \mathscr{K} for the Polygon zkEVM

Héctor Masip Ardevol
Joint work with Polygon zkEVM

Information Security Group (ISG),
Universitat Politècnica de Catalunya (UPC)

Table of Contents

Why fflon \mathscr{K} in the zkEVM?

The PCS of fflonK: $\mathfrak{c - s h p l o n K}$

Implementation Details and $\mathrm{ffron} \mathscr{K}$

Which is the Finality of a zkEVM?

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500 standard) of transactions:
a) Polynomials:

1. Total number of polynomials: 1276 .
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: $n=2^{23}$.
b) Constraints:
5. Number of AIR constraints: 631 (with degree's bound of $3 n$)
6. Number of inclusion constraints: 28
7. Number of connection constraints: 2
8. Number of multiset equality constraints: 18 .

Working over the prime fetd \mathbb{T}_{p} with $p=2^{64}-2^{32}+1$, this means that

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500 standard) of transactions:
a) Polynomials:

1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: $n=2^{23}$.
b) Constraints:
5. Number of AIR constraints: 631 (with degree's bound of $3 n$).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field \mathbb{F}_{p} with $p=2^{64}-2^{32}+1$, this means that:

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500 standard) of transactions:
a) Polynomials:

1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: $n=2^{23}$.
b) Constraints:
5. Number of AIR constraints: 631 (with degree's bound of $3 n$).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field \mathbb{F}_{p} with $p=2^{64}-2^{32}+1$, this means that:
The (non-encoded) execution trace is around 86GB.

SNARKs for the Polygon zkEVM

- To generate a SNARK for this gigantic circuit C we need a very fast prover.
- Since the proof will be verified on-chain, we have also required a small proof size and a fast verifier.
- Solution: Compose a SNARK \mathcal{I} that features a fast prover with another SNARK \mathcal{O} that boasts a small proof size and a fast verifier.
- We chose eSTARK ${ }^{1}$ (very fast prover, but long proof size) for \mathcal{I} and $f f$ lon \mathscr{K} (slow prover, but constant proof size and verification time) for \mathcal{O}.

[^0]
SNARKs with Constant Proof Size and Verification Time

Scheme	Universal TS	CRS/SRS Size	Proving Time	Proof Size	Ver. Time
Groth16	\boldsymbol{x}	$3 m+w \mathbb{G}_{1}$	$3 m+w-\ell \mathbb{G}_{1}, m \mathbb{G}_{2}$	$2 \mathbb{G}_{1}, 1 \mathbb{G}_{2}$	$\ell \mathbb{G}_{1}, 3$ P
$\mathscr{P l o n} \mathscr{K}$	\checkmark	$3 n \mathbb{G}_{1}, 2 \mathbb{G}_{2}$	$11 n \mathbb{G}_{1}$	$7 \mathbb{G}_{1}, 7 \mathbb{F}$	$16 \mathbb{G}_{1}, 2 \mathrm{P}$
fflon \mathscr{K}	\checkmark	$9 n \mathbb{G}_{1}, 2 \mathbb{G}_{2}$	$35 n \mathbb{G}_{1}$	$4 \mathbb{G}_{1}, 15 \mathbb{F}$	$5 \mathbb{G}_{1}, 2 \mathrm{P}$

- m denotes the number of multiplication gates.
- w denotes the number of wires.
- n denotes the number of gates.
- ℓ denotes the number of public inputs ($\ell=1$ in our case).
- \mathbb{G}_{i} denotes scalar multiplications in \mathbb{G}_{j}.
- P denotes pairings.

SNARKs with Constant Proof Size and Verification Time

Scheme	Universal TS	CRS/SRS Size	Proving Time	Proof Size	Ver. Time
Groth16	\boldsymbol{x}	$3 m+w \mathbb{G}_{1}$	$3 m+w-\ell \mathbb{G}_{1}, m \mathbb{G}_{2}$	$2 \mathbb{G}_{1}, 1 \mathbb{G}_{2}$	$\approx 232.000 \mathrm{gas}$
$\mathscr{P l o n} \mathscr{K}$	\checkmark	$3 n \mathbb{G}_{1}, 2 \mathbb{G}_{2}$	$11 \mathrm{G} \mathbb{G}_{1}$	$7 \mathbb{G}_{1}, 7 \mathbb{F}$	$\approx 285.000 \mathrm{gas}$
fflon \mathscr{K}	\checkmark	$9 n \mathbb{G}_{1}, 2 \mathbb{G}_{2}$	$35 n \mathbb{G}_{1}$	$4 \mathbb{G}_{1}, 15 \mathbb{F}$	$\approx 185.000 \mathrm{gas}$

- m denotes the number of multiplication gates.
- w denotes the number of wires.
- n denotes the number of gates.
- ℓ denotes the number of public inputs ($\ell=1$ in our case).
- \mathbb{G}_{i} denotes scalar multiplications in \mathbb{G}_{j}.
- P denotes pairings.

Proof System Diagram

Table of Contents

Why ffron \mathscr{K} in the zkEVM?

The PCS of fflonK: $\mathfrak{c - s h p l o n \mathfrak { K }}$

Implementation Details and fflon \mathscr{K}

What is a Polynomial Commitment Scheme (PCS)? i

Given the polynomial family $\mathcal{F}=\mathbb{F}_{<d}[X]$ of polynomials of degree lower than d with coefficients over a finite field \mathbb{F}, a PCS works as follows:
$\left.\left.\begin{array}{|lll|}\hline \text { The Prover } \mathcal{P}(\mathcal{F}, f) & & \text { The Verifier } \mathcal{V}(\mathcal{F}) \\ \hline \text { commit }(f)=\operatorname{com}_{f} & & \operatorname{com}_{f}\end{array}\right] \begin{array}{l}\text { Samples an evaluation } \\ \text { challenge } x \in \mathbb{F}\end{array}\right]$

What is a Polynomial Commitment Scheme (PCS)? ii

Definition 1

A Polynomial Commitment Scheme (PCS) is a tuple (setup, commit, open) such that:

- $\operatorname{setup}\left(1^{\lambda}\right)=$ gp. Outputs the public group parameters gp.
- commit(gp,f,r) $=\operatorname{com}_{f}$. Outputs a commitment to $f \in \mathcal{F}$ with ${ }^{2} r \in \mathbb{F}$.
- open(gp, $f, x, y)$ is a (public coin) protocol between \mathcal{P} and \mathcal{V} such that:

1. $\mathcal{P}(g p, f, x, y)=\pi$.
2. $\mathcal{V}\left(\mathrm{gp}, \operatorname{com}_{f}, x, y, \pi\right)=$ accept/reject.

In open is turned non-interactive, then a PCS is a (zk-)SNARK for the statement:

$$
\text { "I know an } f \in \mathcal{F} \text { such that } f(x)=y \text { and commit(gp, } f, r)=\text { com }_{f} . \text { " }
$$

[^1]
Example of PCS: KZG

$\operatorname{setup}\left(1^{\lambda}\right)$: The setup algorithm works by sampling a random $s \in \mathbb{F}$, computing gp $=\left([1]_{1},[s]_{1}, \ldots,\left[s^{d-1}\right]_{1},[1]_{2},[s]_{2}\right)$ and deleting s.

| The Prover $\mathcal{P}(\mathcal{F}, f)$ | | The Verifier $\mathcal{V}(\mathcal{F})$ |
| :--- | :--- | :--- | :--- |
| commit $(\mathrm{gp}, f, r)=f(s) \mathbb{G}_{1}:=[f(s)]_{1}$ | $[f(s)]_{1}$ | |
| | x | Samples an evaluation challenge $x \in \mathbb{F}$ |

Computes $f(x)=y$,
the polynomial $q(X)=\frac{f(X)-y}{X-x}$,
and the proof $\pi:=[q(s)]_{1}$.

Outputs accepts if:

$$
e\left([q(s)]_{1},[s]_{2}-[x]_{2}\right)=e\left([f(s)]_{1}-[y]_{1},[1]_{2}\right),
$$

rejecting otherwise.

Properties of KZG

- The algorithm $\operatorname{setup}\left(1^{\lambda}\right)$ requires to be trusted on deleting s.
- \mathcal{P} runs in $O(d)$ since it computes:
a) The MSM $f(s) \mathbb{G}_{1}=f_{0} \cdot[1]_{1}+f_{1} \cdot[s]_{1}+\cdots+f_{d-1} \cdot\left[s^{d-1}\right]_{1}$.
b) The division $q(X)=(f(X)-y) /(X-x)$.
c) The MSM $q(s) \mathbb{G}_{1}=q_{0} \cdot[1]_{1}+q_{1} \cdot[s]_{1}+\cdots+q_{d-2} \cdot\left[s^{d-2}\right]_{1}$.
- The proof π consists of a single \mathbb{G}_{1}-element.
- \mathcal{V} runs in $O(1)$ time since it computes 2 pairings.
- It can be made zero-knowledge by masking f with $r\left[Z G K^{+} 18\right]$.
- Direct generalizations: batch openings, multiple polynomials and both.

Simple KZG Generalizations

Batch Openings: Open f at x_{1}, \ldots, x_{m}.

- Compute the polynomial $r \in \mathbb{F}_{<m}[X]$ s.t. $r\left(x_{j}\right)=f\left(x_{j}\right)$.
- Compute the quotient $q(X)=(f(X)-r(X)) / \prod_{j=1}^{m}\left(X-X_{j}\right)$.
- Verifying q is a polynomial implies $f\left(x_{j}\right)=y_{j}$, for $j \in[m]$.

Multiple Polynomials: Open ff

Compute the quotient $q_{i}(X)=\left(f_{i}(X)-y_{i}\right) /(X-x)$ for each $i \in[n]$.
Mix all the resulting quotients with a random linear combination q.
Verifying q is a polynomial implies each q_{i} is a polynomial, for $i \in[n]$

Simple KZG Generalizations

Batch Openings: Open f at x_{1}, \ldots, x_{m}.

- Compute the polynomial $r \in \mathbb{F}_{<m}[X]$ s.t. $r\left(X_{j}\right)=f\left(x_{j}\right)$.
- Compute the quotient $q(X)=(f(X)-r(X)) / \prod_{j=1}^{m}\left(X-X_{j}\right)$.
- Verifying q is a polynomial implies $f\left(x_{j}\right)=y_{j}$, for $j \in[m]$.

Multiple Polynomials: Open f_{1}, \ldots, f_{n} at x.

- Compute the quotient $q_{i}(X)=\left(f_{i}(X)-y_{i}\right) /(X-x)$ for each $i \in[n]$.
- Mix all the resulting quotients with a random linear combination q.
- Verifying q is a polynomial implies each q_{i} is a polynomial, for $i \in[n]$.

Generalization: Batch Openings and Multiple Polynomials ($\mathscr{P l o n} \mathscr{K}$ Version) (*)

$$
\begin{aligned}
& \begin{array}{lll}
\begin{array}{ll}
\text { The Prover } \mathcal{P}\left(\mathcal{F}, f_{1}, \ldots, f_{n_{1}}, f_{1}^{\prime}, \ldots, f_{n_{2}}^{\prime}\right) & \text { The Verifier } \mathcal{V}(\mathcal{F}) \\
\text { commit(gp, } \left.f_{i}, r_{i}\right)=\left[f_{i}(s)\right]_{1}, \text { for } i \in\left[n_{1}\right] & \\
\text { commit(gp, } \left.f_{i}^{\prime}, r_{i}^{\prime}\right)=\left[f_{i}^{\prime}(s)\right]_{1}, \text { for } i \in\left[n_{2}\right] \\
& \xrightarrow{\left[f_{1}(s)\right]_{1}, \ldots,\left[f_{n_{1}}(s)\right]_{1}} \\
{\left[f_{1}^{\prime}(s)\right]_{1}, \ldots,\left[f_{n_{2}}^{\prime}(s)\right]_{1}}
\end{array} & \\
& x, x^{\prime} & \text { Samples evaluation challenges } x, x^{\prime} \in \mathbb{F}
\end{array} \\
& \text { Computes } f_{i}(x)=y_{i} \text { and } f_{i}^{\prime}\left(x^{\prime}\right)=y_{i}^{\prime} \\
& \text { the polynomials: } \\
& q(x)=\sum_{i=1}^{n_{1}} \alpha^{i-1} \cdot \frac{f_{i}(x)-y_{i}}{x-x} \\
& q^{\prime}(x)=\sum_{i=1}^{n_{2}}\left(\alpha^{\prime}\right)^{i-1} \cdot \frac{f_{i}^{\prime}(x)-y_{i}^{\prime}}{x-x^{\prime}} \\
& \text { and the proofs } \pi=[q(s)]_{1}, \pi^{\prime}=\left[q^{\prime}(s)\right]_{1} \\
& \xrightarrow[{y_{1}^{\prime}, \ldots, y_{n_{2}}^{\prime},\left[q^{\prime}(s)\right]_{1}}]{y_{1}, \ldots, y n_{1},[q(s)]_{1}} \\
& \text { Computes }[F(s)]_{1}=\sum_{i=1}^{n_{1}} \alpha^{i-1} \cdot\left[f_{i}(s)\right]_{1}+r \cdot \sum_{i=1}^{n_{2}}\left(\alpha^{\prime}\right)^{i-1} \cdot\left[f_{i}^{\prime}(s)\right]_{1} \\
& \text { and } Y=\sum_{i=1}^{n_{1}} \alpha^{i-1} \cdot y_{i}+r \cdot \sum_{i=1}^{n_{2}}\left(\alpha^{\prime}\right)^{i-1} \cdot y_{i}^{\prime} \\
& \text { Outputs accepts if: } \\
& e\left([q(s)]_{1}+r \cdot\left[q^{\prime}(s)\right]_{1}^{\prime},[s]_{2}\right)=e\left([F(s)]_{1}-\left[Y_{1}+x \cdot[q(s)]_{1}+r \cdot x \cdot\left[q^{\prime}(s)\right]_{1},[1]_{2}\right)\right. \\
& \text { rejecting otherwise. }
\end{aligned}
$$

$\mathscr{P l o n} \mathscr{K}$ KZG: Complexity (*)

Theorem 2 (Worst case KZG Complexity)

Let $f_{1}, \ldots, f_{n_{1}}, f_{1}^{\prime}, \ldots, f_{n_{2}}^{\prime} \in \mathcal{F}$ be of degree $d-1$ such that any of them have zero coefficients. The (n_{1}, n_{2})-pols and (1, 1)-openings version of the KZG polynomial commitment scheme has the following measures:

1. Proving Time: $\left(n_{1}+n_{2}+2\right) d-2$ escalar multiplications over \mathbb{G}_{1}.
2. Proof Size: $\left(n_{1}+n_{2}+2\right) \mathbb{G}_{1}$-elements and $\left(n_{1}+n_{2}+2\right) \mathbb{F}$-elements.
3. Verification Time: $\left(n_{1}+n_{2}+2\right)$ escalar multiplications over \mathbb{G}_{1} and 2 pairings.

- Problem: The verification complexity is dominated by the scalar multiplications performed over the \mathbb{G}_{1}-elements in the proof.
- Solution: Reduce \mathbb{G}_{1}-elements in the proof.

Some Previous Results i

- Claim 1: In general, $f\left(x_{i}\right)=y_{i}$ for $i \in[n]$ if and only if $q(X)=(f(X)-r(X)) / Z_{S}(X)$ is a polynomial of degree deg(f) - |S|.
- Claim 2: Even more general, $f\left(x_{i}\right)=y_{i}$ and $f^{\prime}\left(x_{i}^{\prime}\right)=y_{i}^{\prime}$ for $i \in[n]$ if and only if $q(X)=(f(X)-r(X)) / Z_{S}(X)+\alpha \cdot\left(f^{\prime}(X)-r^{\prime}(X)\right) / Z_{S^{\prime}}(X)$ is a polynomial of degree $d=\max \left\{\operatorname{deg}(f)-|S|, \operatorname{deg}\left(f^{\prime}\right)-\left|S^{\prime}\right|\right\}$, where $\alpha \in \mathbb{F}$ is a uniformly sampled value.

Lemma 3 (shplon \mathfrak{K} [BDFG20])

$f\left(x_{i}\right)=y_{i}$ and $f^{\prime}\left(x_{i}^{\prime}\right)=y_{i}^{\prime}$ for $i \in[n]$ if and only if the following polynomial is of degree d :

$$
L(X)=\frac{Z_{S^{\prime}}(y)(f(X)-r(y))+\alpha \cdot z_{s}(y)\left(f^{\prime}(X)-r^{\prime}(y)\right)-Z_{S S^{\prime}}(y) \cdot q(X)}{X-y}
$$

Put simply: Validating the $|S|+\left|S^{\prime}\right|$ openings of q is equivalent to validating the opening at 0 of L (i.e., the verifier complexity does not grow with the number of openings).

Some Previous Results ii

- The combine $C: \mathbb{F}_{<d}[X]^{t} \rightarrow \mathbb{F}_{<d t}[X]$ function is defined as follows:

$$
C\left(f_{1}, \ldots, f_{t}\right):=\sum_{i=1}^{t} f_{i}\left(X^{t}\right) \cdot x^{i-1}
$$

Lemma 4 ($\mathfrak{c}-$ shplonk $\left.^{[G W} 21\right]$)
Opening $f_{1}, \ldots, f_{t} \in \mathbb{F}[X]$ at $x \in \mathbb{F}$ is the equivalent to opening C at the t-roots of x, that is, the t solutions of:

$$
\begin{equation*}
z^{t}=x \quad(\bmod p) . \tag{1}
\end{equation*}
$$

In fact, if $z \in \mathbb{F}$ is a solution of (1), then so are $z \cdot \omega_{t}^{i}$, for $i \in[t]$.

A Verifier-Friendly PCS: c-shplon

The Prover $\mathcal{P}\left(\mathcal{F}, f_{1}, \ldots, f_{n_{1}}, f_{1}^{\prime}, \ldots, f_{n_{2}}^{\prime}\right)$		The Verifier $\mathcal{V}(\mathcal{F})$
Compute the polynomial combinations:		
$c(x)=\sum_{i=1}^{n_{1}} f_{i}\left(x^{n_{1}}\right) \cdot x^{i-1}$		
$C^{\prime}(X)=\sum_{i=1}^{n_{2}} f_{i}^{\prime}\left(x^{n_{2}}\right) \cdot x^{i-1}$		
and their commitment $[C(s)]_{1},\left[C^{\prime}(s)\right]_{1}$	$[C(s)]_{1},\left[C^{\prime}(s)\right]_{1}$	
	x, x^{\prime}	Samples evaluation challenges $x, x^{\prime} \in \mathbb{F}$
Computes $f_{i}(x)=y_{i}$ and $f_{i}^{\prime}\left(x^{\prime}\right)=y_{i}^{\prime}$	$\xrightarrow{\ldots, y_{n_{1}}, y_{1}^{\prime}, \ldots, y_{y_{n_{2}}^{\prime}}^{\prime}}$	

A Verifier-Friendly PCS: $\mathfrak{c - s h p l o n} \mathfrak{\Re}$ ii

A Verifier-Friendly PCS: $\mathfrak{c}-\mathfrak{s h p l o n} \mathfrak{K}$ iii

c-shplonf: Complexity (*)

- Let $c_{i}=\left(n_{i} \cdot d+n_{i}-1\right)$.Assume w.l.o.g. that $n_{1}>n_{2}$ and that $c_{1}-|S|>c_{2}-\left|S^{\prime}\right|$.

Theorem 5 (Worst case $\mathfrak{c - s h p l o n} \mathfrak{K}$ Complexity)
Let $f_{1}, \ldots, f_{n_{1}}, f_{1}^{\prime}, \ldots, f_{n_{2}}^{\prime} \in \mathcal{F}$ be of degree $d-1$ such that any of them have zero coefficients. The (n_{1}, n_{2})-pols and (1,1)-openings version of the \mathfrak{c}-shplon \mathfrak{K} polynomial commitment scheme has the following measures:

1. Proving Time: $3 c_{1}+c_{2}-2|S|$ escalar multiplications over \mathbb{G}_{1}.
2. Proof Size: $4 \mathbb{G}_{1}$-elements and $\left(n_{1}+n_{2}+4\right) \mathbb{F}$-elements.
3. Verification Time: 4 escalar multiplications over \mathbb{G}_{1} and 2 pairings.

Table of Contents

Why ffron \mathscr{K} in the zkEVM?

The PCS of fflonK: \mathfrak{c}-shplon \mathfrak{K}

Implementation Details and $f f$ lon \mathscr{K}^{-}

A Useful Observation

- The combine $C: \mathbb{F}_{<d}[X]^{t} \rightarrow \mathbb{F}_{<d t}[X]$ function is defined as follows:

$$
C\left(f_{1}, \ldots, f_{t}\right):=\sum_{i=1}^{t} f_{i}\left(X^{t}\right) \cdot x^{i-1}
$$

- Let $f, g, h \in \mathbb{F}_{<4}[X]$. To obtain commit(gp, C) observe that computing $f\left(X^{t}\right) \cdot X^{i}$ is a "multiply-index-by-t" (except for zero) followed by "shift-index-by-i":
and moreover
a) $\operatorname{commit}(C)=\operatorname{commit}\left(f\left(X^{3}\right)\right)+\operatorname{commit}\left(g\left(X^{3}\right) X\right)+\operatorname{commit}\left(h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar
b) $\operatorname{commit}(C)=\operatorname{commit}\left(f\left(X^{3}\right)+g\left(X^{3}\right) X+h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar multiplications.
c) commit(C) takes exactly dt ed scalar multimlications.

A Useful Observation

- The combine $C: \mathbb{F}_{<d}[X]^{t} \rightarrow \mathbb{F}_{<d t}[X]$ function is defined as follows:

$$
C\left(f_{1}, \ldots, f_{t}\right):=\sum_{i=1}^{t} f_{i}\left(X^{t}\right) \cdot x^{i-1}
$$

- Let $f, g, h \in \mathbb{F}_{<4}[X]$. To obtain commit (gp, C) observe that computing $f\left(X^{t}\right) \cdot X^{i}$ is a "multiply-index-by-t" (except for zero) followed by "shift-index-by-i":

$$
\begin{aligned}
& f\left(X^{3}\right)=\left[f_{0}, \quad 0,0, f_{1}, 0,0, f_{2}, 0,0, f_{4}, 000\right] \quad 0 \\
& g\left(X^{3}\right) \cdot X=\left[\begin{array}{lllllllllll}
0, & g_{0}, & 0, & 0, & g_{1}, & 0, & 0, & g_{2}, & 0, & 0, & g_{4}
\end{array} 0\right. \\
& h\left(X^{3}\right) \cdot X^{2}=\left[\begin{array}{llllllllll}
0, & 0 & h_{0}, & 0 & 0 & h_{1}, & 0, & 0 & h_{2}, & 0, \\
0 & h_{4}
\end{array}\right]
\end{aligned}
$$

and moreover:
a) $\operatorname{commit}(C)=\operatorname{commit}\left(f\left(X^{3}\right)\right)+\operatorname{commit}\left(g\left(X^{3}\right) X\right)+\operatorname{commit}\left(h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar multiplications and 2 additions.
b) commit $(C)=\operatorname{commit}\left(f\left(X^{3}\right)+g\left(X^{3}\right) X+h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar multiplications.
c) commit(C) takes exactly $d t \mathbb{G}_{1}$ scalar multiplications.

A Useful Observation

- The combine $C: \mathbb{F}_{<d}[X]^{t} \rightarrow \mathbb{F}_{<d t}[X]$ function is defined as follows:

$$
C\left(f_{1}, \ldots, f_{t}\right):=\sum_{i=1}^{t} f_{i}\left(X^{t}\right) \cdot x^{i-1}
$$

- Let $f, g, h \in \mathbb{F}_{<4}[X]$. To obtain commit $(g p, C)$ observe that computing $f\left(X^{t}\right) \cdot X^{i}$ is a "multiply-index-by-t" (except for zero) followed by "shift-index-by-i":

$$
\begin{aligned}
& f\left(X^{3}\right)=\left[f_{0}, \quad 0,0, f_{1}, \quad 0,0, f_{2}, 0,0, f_{4}, 000\right] \quad 0 \\
& g\left(X^{3}\right) \cdot X=\left[\begin{array}{lllllllllll}
0, & g_{0}, & 0, & 0 & g_{1}, & 0, & 0, & g_{2}, & 0, & 0, & g_{4}
\end{array} 0\right. \\
& h\left(X^{3}\right) \cdot X^{2}=\left[\begin{array}{llllllllll}
0, & 0 & h_{0}, & 0, & 0 & h_{1}, & 0, & 0, & h_{2}, & 0, \\
0 & h_{4}
\end{array}\right]
\end{aligned}
$$

and moreover:
a) $\operatorname{commit}(C)=\operatorname{commit}\left(f\left(X^{3}\right)\right)+\operatorname{commit}\left(g\left(X^{3}\right) X\right)+\operatorname{commit}\left(h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar multiplications and 2 additions.
b) $\operatorname{commit}(C)=\operatorname{commit}\left(f\left(X^{3}\right)+g\left(X^{3}\right) X+h\left(X^{3}\right) X^{2}\right)$ takes 15 scalar multiplications.
c) commit((C) takes exactly $d t \mathbb{G}_{1}$ scalar multiplications.

Verifier Field Inversions

- Say that the verifier needs to perform the inversion of $x_{1}, \ldots, x_{n} \in \mathbb{F}$.
- Using Montgomery batch inversion we can convert the n inversions to 1 (16.000 gas) inversion and $3 \cdot(n-1)$ multiplications.
- Problem: The verifier still needs to perform 1 inversion.

Solution: Let the prover do it for you!

Computes the inversion of:

Denote it as \tilde{x}
\qquad

Verifier Field Inversions

- Say that the verifier needs to perform the inversion of $x_{1}, \ldots, x_{n} \in \mathbb{F}$.
- Using Montgomery batch inversion we can convert the n inversions to 1 (16.000 gas) inversion and $3 \cdot(n-1)$ multiplications.
- Problem: The verifier still needs to perform 1 inversion.
- Solution: Let the prover do it for you!

The Prover $\mathcal{P}(\mathbb{F})$		The Verifier $\mathcal{V}(\mathbb{F})$
		Samples the inversion
	x_{1}, \ldots, x_{n}	challenges $x_{1}, \ldots, x_{n} \in \mathbb{F}$
Computes the inversion of:		
$x=x_{1} \cdot \ldots \cdot x_{n}$		
Denote it as \tilde{x}		
		Compute x and check $x \cdot \tilde{x}=1$
		Run batch inversion on x, \tilde{x}

Zerofier Division i

- Let $T=S_{0} \cup S_{1} \cup S_{2}$ where:

$$
S_{0}=h_{0}\left\langle\omega_{0}\right\rangle, \quad S_{1}=h_{1}\left\langle\omega_{1}\right\rangle, \quad S_{2}=h_{2}\left\langle\omega_{2}\right\rangle \cup h_{3}\left\langle\omega_{2}\right\rangle
$$

where $h_{0}^{\left|S_{0}\right|}=h_{1}^{\left|S_{1}\right|}=h_{2}^{\left|S_{2}\right| / 2}=\mathfrak{z}, h_{3}^{\left|\mathcal{S}_{2}\right| / 2}=\mathfrak{z} \omega$ and $\omega_{0}, \omega_{1}, \omega_{2}, \omega$ are primitive roots of unity.

- In Round 4 , we should divide a polynomial $f \in \mathbb{F}[X]$ of degree $\geq|T|$ by the zerofier over T:

$$
z_{T}(X):=\prod_{z \in T}(X-z)
$$

- Naive polynomial long division would take (unparallelizable) $O\left(|T|^{2}\right)$ time. Let's do it better!

Zerofier Division ii

We start by noticing that:

$$
Z_{T}(X)=Z_{S_{0}}(X) \cdot Z_{S_{1}}(X) \cdot Z_{S_{2}}(X)=\left(X^{\left|S_{0}\right|}-\mathfrak{z}\right) \cdot\left(X^{\left|S_{1}\right|}-\mathfrak{z}\right) \cdot\left(X^{\left|S_{2}\right|}-\mathfrak{z}(1+\omega) X^{\left|S_{2}\right| / 2}+\mathfrak{z}^{2} \omega\right) .
$$

Then, we (sequentially) proceed as follows:

1. Divide f by $Z_{S_{0}}$ to obtain the polynomial q_{0} such that $q_{0}(X) \cdot Z_{S_{0}}(X)=f(X)$.
2. Divide q_{0} by $Z_{S_{1}}$ to obtain the polynomial q_{1} such that $q_{1}(X) \cdot Z_{S_{1}}(X)=q_{0}(X)$.
3. Split $Z_{S_{2}}(X)=\left(X^{\left|S_{2}\right|}-\mathfrak{z}(1+\omega) X^{\left|S_{2}\right| / 2}+\mathfrak{z}^{2} \omega\right)$ as the multiplication of the two inner zerofiers $\left(X^{\left|S_{2}\right| / 2}-\mathfrak{z}\right)$ and $\left(X^{\left|S_{2}\right| / 2}-\mathfrak{z} \omega\right)$.
Then:
a) Divide q_{1} by $\left(X^{\left|s_{2}\right| / 2}-\mathfrak{z}\right)$ to obtain the polynomial q_{2} s.t. $q_{2}(X) \cdot\left(X^{\left|s_{2}\right| / 2}-\mathfrak{z}\right)=q_{1}(X)$.
b) Divide q_{2} by $\left(X^{\left.\right|_{2} \mid / 2}-z \omega\right)$ to obtain the polynomial q_{3} s.t. $q_{3}(X) \cdot\left(X^{\left|S_{2}\right| / 2}-z \omega\right)=q_{2}(X)$. The polynomial q_{3} satisfies $q_{3}(X) \cdot Z_{T}(X)=f(X)$.

Division by $X^{m}-\beta$ (*) *

Lemma 6

Given a polynomial $f(X)=f_{d} X^{d}+\cdots+f_{1} X+f_{0} \in \mathbb{F}[X]$ of degree $d \geq m$ and a field element β, the quotient of the division $f(X) /\left(X^{m}-\beta\right)$ is the polynomial:

$$
\begin{aligned}
q(X):= & {\left[f_{d} \cdot X^{d-m}+f_{d-1} \cdot X^{(d-1)-m}+\cdots+f_{d-(m-1)} \cdot X^{(d-(m-1))-m}\right]+} \\
& +\left[\left(f_{d-m}+f_{d} \cdot \beta\right) \cdot X^{(d-m)-m}+\cdots+\left(f_{d-(2 m-1)}+f_{d-(m-1)} \cdot \beta\right) \cdot X^{(d-(2 m-1))-m}\right]+ \\
& +\left[\left(f_{d-2 m}+f_{d-m} \cdot \beta+f_{d} \cdot \beta^{2}\right) \cdot X^{(d-2 m)-m}+\ldots\right. \\
& \left.+\left(f_{d-(3 m-1)}+f_{d-(2 m-1)} \cdot \beta+f_{d-(m-1)} \cdot \beta^{2}\right) \cdot X^{(d-(3 m-1))-m}\right]+\ldots
\end{aligned}
$$

Division by $X^{m}-\beta(*)$ ii

- In words, q is a polynomial with the m leading coefficients equal to the m leading coefficients of f; the following m coefficients are of the form $f_{i}+f_{j} \cdot \beta$, with $j-i=m$; the following m coefficients are of the form $f_{i}+f_{j} \cdot \beta+f_{k} \cdot \beta^{2}$, with $j-i=k-j=m$; and so on.
- For instance, if $f(X)=\sum_{i=0}^{10} f_{i} X^{i}$ and $m=2$, then:

$$
\begin{aligned}
q(X):= & f_{10} X^{8}+f_{9} X^{7}+\left(f_{8}+f_{10} \beta\right) X^{6}+\left(f_{7}+f_{9} \beta\right) X^{5}+ \\
& +\left(f_{6}+f_{8} \beta+f_{10} \beta^{2}\right) X^{4}+\left(f_{5}+f_{7} \beta+f_{9} \beta^{2}\right) X^{3}+ \\
& +\left(f_{4}+f_{6} \beta+f_{8} \beta^{2}+f_{10} \beta^{3}\right) X^{2}+\left(f_{3}+f_{5} \beta+f_{7} \beta^{2}+f_{9} \beta^{3}\right) X+ \\
& +\left(f_{2}+f_{4} \beta+f_{6} \beta^{2}+f_{8} \beta^{3}+f_{10} \beta^{4}\right)
\end{aligned}
$$

- This division is 100% parallelizable.

Adding Zero-Knowledge (with Dummy Gates) i

- In $\mathscr{P l o n} \mathscr{K}$, in the order for the protocol to be zero-knowledge, the authors add to the witness polynomials a blinding polynomial $b \in \mathbb{F}[X]$ as follows:

$$
a(X):=b(X) Z_{H}(X)+\sum_{i=1}^{n} w_{i} \cdot L_{i}(X)
$$

- This strategy ends up defining polynomials with degree $n+\operatorname{deg}(b)$, which is inefficient for practical scenarios in which n is a power of two.
- To avoid this issue, we instead sample $b_{1}, b_{2} \in \mathbb{F}$ and compute:

$$
a(X):=\sum_{i=1}^{n-2} w_{i} L_{i}(X)+b_{1} L_{n-1}(X)+b_{2} L_{n}(X)
$$

Notice that now a has degree lower than n.

Adding Zero-Knowledge (with Dummy Gates) ii

- However, for the permutation polynomial we do it in the standard way:

$$
\begin{aligned}
& z(X):=\left(b_{7} X^{2}+b_{8} X+b_{9}\right) Z_{H}(X)+L_{1}(X) \\
& +\sum_{i=1}^{n_{1}}\left(L_{i+1}(X) \prod_{j=1}^{i} \frac{\left(w_{j}+\beta \omega^{j}+\gamma\right)\left(w_{n+j}+\beta k_{1} w^{j}+\gamma\right)\left(w_{2 n+j}+\beta k_{2} \omega^{j}+\gamma\right)}{\left(w_{j}+\beta \sigma^{*}(j)+\gamma\right)\left(w_{n+j}+\beta \sigma^{*}(n+j)+\gamma\right)\left(w_{2 n+j}+\beta \sigma^{*}(2 n+j)+\gamma\right)}\right)
\end{aligned}
$$

- In fflon \mathscr{R}, every constraint adds an n factor to the prover time.
- If done with the dummy gates strategy, we would have needed to add the following constraint:

$$
L_{n-1}(X)(z(X)-1)=0
$$

to ensure the correctness of the permutation.

fflon \mathscr{K}^{-}and \mathscr{H} yperfflon

Tradeoff between \mathcal{P} and \mathcal{V} running times in $\mathcal{f f l o n ~} \mathscr{K}$

Thank you for your attention!

國 Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon.
Efficient polynomial commitment schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081, 2020.
https://eprint.iacr.org/2020/081
Ariel Gabizon and Zachary J. Williamson.
fflonk: a fast-fourier inspired verifier efficient version of PlonK.
Cryptology ePrint Archive, Report 2021/1167, 2021.
https://eprint.iacr.org/2021/1167.
國 Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou.
vRAM: Faster verifiable RAM with program-independent preprocessing. In 2018 IEEE Symposium on Security and Privacy, pages 908-925. IEEE Computer Society Press, May 2018.

[^0]: ${ }^{1}$ This proving system is precisely the STARK proving system with support for arguments.

[^1]: ${ }^{2}$ The commitment scheme is statistically binding and computationally hiding, but r can be used to make it computationally binding and statistically hiding.

