) Ofr0
LY i
fflon&K for the Polygon zkEVM

Héctor Masip Ardevol

Joint work with Polygon zkEVM

Information Security Group (ISG), April 4th 2023 - Lisbon
Universitat Politécnica de Catalunya (UPC)

Table of Contents

Why ££lon in the zZKEVM?

1/31

Which is the Finality of a zkEVM?

Transactions
(X1, tX2, tXs, ..., tXn)
are valid

Execute the function
sendToken(0x1A2C..., 27)
on the SC MyToken

Bob sends 0.2ETH
to Alice

|
N
X1, tXo, tXs, ..., tXn tX1, tXz, tXs, ..., tXn .

2/31

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (= 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: n = 2%.

3/31

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (= 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: n = 2%.
b) Constraints:
5. Number of AIR constraints: 631 (with degree’s bound of 3n).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

3/31

Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (= 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree's bound of polynomials: n = 2%.
b) Constraints:
5. Number of AIR constraints: 631 (with degree’s bound of 3n).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field F, with p = 254 — 232 + 1, this means that:

’The (non-encoded) execution trace is around 86GB.

3/31

SNARKs for the Polygon zkEVM

- To generate a SNARK for this gigantic circuit C we need a very fast prover.

- Since the proof will be verified on-chain, we have also required a small proof size
and a fast verifier.

- Solution: Compose a SNARK Z that features a fast prover with another SNARK O that
boasts a small proof size and a fast verifier.

- We chose eSTARK! (very fast prover, but long proof size) for Z and ££lonF (slow
prover, but constant proof size and verification time) for O.

eSTARK

fflon&

Prover P —nesTARK Prover P -””“’“ﬁ

TThis proving system is precisely the STARK proving system with support for arguments.

4/31

SNARKs with Constant Proof Size and Verification Time

Scheme | Universal TS | CRS/SRS Size Proving Time Proof Size | Ver. Time
Groth16 X 3m+ w Gy IM+w—0G,mG, | 2G,1G, | £G1,3P
PlonK v 3n Gq,2 G, 11n G, 7G1,7F | 16G,2 P
£flonK v I G1,2 G, 35n Gy 4Gy,15F | 5Gq,2P

- m denotes the number of multiplication gates.
- w denotes the number of wires.
- n denotes the number of gates.

- ¢ denotes the number of public inputs (¢ = 1in our case).
- G; denotes scalar multiplications in G;.

- P denotes pairings.

5/31

SNARKs with Constant Proof Size and Verification Time

Scheme | Universal TS | CRS/SRS Size Proving Time Proof Size Ver. Time

Groth16 X 3m+w Gy IM+w—0Gy,mG, | 2G41,1G, | ~232.000 gas
PlonF v 3nG1,2 G, 11n G, 7G1,7F | ~285.000 gas
fElonE v In G,2 G, 35n Gy 4 G41,15F | &~ 185.000 gas

- m denotes the number of multiplication gates.

- w denotes the number of wires.

- n denotes the number of gates.

- ¢ denotes the number of public inputs (¢ = 1in our case).

- G; denotes scalar multiplications in G;.

- P denotes pairings.

6/31

Proof System Diagram

Compression || Normalization || Aggregation Stage Final Stage SNARK
Stage Stage Stage
S ‘S
ZKEVM | Tlpaich c12a Tlc12a recursive,
batch > brover > Prover i
Prover
recursive;
. —— Thesy Prover
Z:)(EIV::A Tloatch | | ¢12a Tlc12a recursive;
alc Prover Prover
Prover
Prover ¥ Prover Prover
— |l | -
ZKEVM | TTpatch | ciza [Tletza || | recusive, | _—1
batch P prover Prover
Prover

7131

Table of Contents

The PCS of ££lonZ: c-shplonf

8/31

What is a Polynomial Commitment Scheme (PCS)? i

Given the polynomial family F = F_4[X] of polynomials of degree lower than d with
coefficients over a finite field I, a PCS works as follows:

The Prover P(F,f) The Verifier V(F)
commit(f) =
it(f) = comy comy
Samples an evaluation
challenge x € F
X
Computes proof 7 that:
X) =
fx) =y yin
Accepts or rejects

9/31

What is a Polynomial Commitment Scheme (PCS)? ii

Definition 1
A Polynomial Commitment Scheme (PCS) is a tuple (setup, commit, open) such that:

- setup(1*) = gp. Outputs the public group parameters gp.
- commit(gp, f,r) = comy. Outputs a commitment to f € F with? r € F.
- open(gp,f,x,y) is a (public coin) protocol between P and V such that:

1. P(gp7f7X7J/) = .
2. V(gp, comy, X, y,) = accept/reject.

In open is turned non-interactive, then a PCS is a (zk-)SNARK for the statement:

“I know an f € F such that f(x) = y and commit(gp, f,r) = comf."‘

2The commitment scheme is statistically binding and computationally hiding, but r can be used to make it computationally binding and statistically hiding.

10/31

Example of PCS: KZG

setup(1*): The setup algorithm works by sampling a random s € F, computing
gp = ([1];,[s]y---» [SCM]1 .[1],.[s],) and deleting s.

The Prover P(F,f) The Verifier V(F)
commit(gp, f,r) = f(s)Gr == [f(s)]; [f(s)];
_—
Samples an evaluation challenge x € F
X
PR S

Computes f(x) =y,

) -y
X—x"

and the proof := [q(s)], .

the polynomial g(X) =

v, [a(s)l,
AT C o N
Outputs accepts if:

e ([a(s)y s 5L =) = e () = Wy - [1L,)

rejecting otherwise.

1y31

Properties of KZG

- The algorithm setup(1*) requires to be trusted on deleting s.
- P runs in O(d) since it computes:

a) The MSM f(S)G1 = fo - [Th + fi - [Sh + - -+ + fa—1 - [

b) The division g(X) = (f(X) — y)/(X — x).

c) The MSM q(s)G1=qo - [1i + G1 - [Sh + - - - + Ga—2 - [s" 1.
- The proof 7 consists of a single Gy-element.

- Vruns in O(1) time since it computes 2 pairings.
- It can be made zero-knowledge by masking f with r [ZGK*18].
- Direct generalizations: batch openings, multiple polynomials and both.

12/31

Simple KZG Generalizations

Batch Openings: Open fat xq,...,Xm.

- Compute the polynomial r € Fon[X] sit. r(x;) = f(X)).
- Compute the quotient q(X) = (f(X) — r(X))/ 1_[;”:1(X - X))
- Verifying g is a polynomial implies f(x;) = y;, for j € [m].

13/31

Simple KZG Generalizations

Batch Openings: Open fat xq,...,Xm.

- Compute the polynomial r € Fon[X] sit. r(x;) = f(X)).
- Compute the quotient q(X) = (f(X) — r(X))/ er”:1(X - X))
- Verifying g is a polynomial implies f(x;) = y;, for j € [m].

Multiple Polynomials: Open fi,...,f, at x.

- Compute the quotient g;(X) = (fi(X) — vi)/(X — x) for each i € [n].
- Mix all the resulting quotients with a random linear combination q.
- Verifying g is a polynomial implies each g; is a polynomial, for i € [n].

13/31

Generalization: Batch Openings and Multiple Polynomials (PlonZ Version) (*)

The Verifier V(F)

commit(gp, f/, /) = [j‘/{(s)L , fori € [ny]
A, -5 Ifnq (S
[Z0)FI. [féz(s)h

X, X
—
Computes fi(x) = y; and f,"(x/) = yl/
the polynomials:
M X) —
a0 = Zu’iw i) —yi
= X —x
i=1
Z 7w -y
') =3 () T
i=1 X=X
’ ’
and the proofs = = [q(s)]; , #° = [q (S)L , ,)]
Toee s ny» 1
Vi oo Yny» [a’(s)]1

Samples evaluation challenges x, X erF

n n
computes [F(s)ly = 3. o' e + - 3 () T I ()
i=1 i=1

n ny
=1 =1
andy =o'y - STy
i=1 i=1
Outputs accepts if:

e (ta@n + - [G) = e (I = 1+ x- T + 7 x- [a/ @] 1)

rejecting otherwise. 14

31

PlonF KZG: Complexity (*)

Theorem 2 (Worst case KZG Complexity)
Letfi,....fo f1,- .., fh, € F be of degree d — 1 such that any of them have zero
coefficients. The (n4, n,)-pols and (1,1)-openings version of the KZG polynomial
commitment scheme has the following measures:

1. Proving Time: (ny + n, + 2)d — 2 escalar multiplications over G.

2. Proof Size: (ny + n, + 2) Gy-elements and (ny + n, + 2) F-elements.

3. Verification Time: (n: + n, + 2) escalar multiplications over Gy and 2 pairings.

- Problem: The verification complexity is dominated by the scalar multiplications
performed over the G4-elements in the proof.

- Solution: Reduce Gq-elements in the proof.

15/31

Some Previous Results i

- Claim 1: In general, f(x;) = y; for i € [n] if and only if g(X) = (f(X) — r(X))/Zs(X) is a
polynomial of degree deg(f) — |S|.

- Claim 2: Even more general, f(x;) = y; and f/(x/) = y/ for i € [n] if and only if
q(X) = (f(X) = r(X))/Zs(X) + - (f (X) — r'(X))/Zs:(X) is @ polynomial of degree
d = max{deg(f) — |S|, deg(f) — |S’|}, where o € F is a uniformly sampled value.

Lemma 3 (shplonR [BDFG20])
f(xi) = yi and f'(x{) = y; for i € [n] if and only if the following polynomial is of degree d:

L) = ZWU) =) + - M) — r'(y) = Zsw (4) - 9(X)
X—y

Put simply: Validating the |S| + |S’| openings of g is equivalent to validating the opening
at 0 of L (i.e, the verifier complexity does not grow with the number of openings).

16/31

Some Previous Results ii

- The combine C: F_4[X]' — F_4[X] function is defined as follows:

t
Clhry - fr) =) _fiX) - X"
=1

Lemma 4 (c-shplong [GW21])
Opening fi, ..., ft € F[X] at x € F is the equivalent to opening C at the t-roots of x, that is,

the t solutions of:
Z'=x (mod p). (1)

In fact, if z € F is a solution of (1), then so are z - wj, for i € [t].

17/31

A Verifier-Friendly PCS: c-shplonf i

The Prover P(F, fi, ..., fay: f1r- - fp) The Verifier V(F)
Compute the polynomial combinations:

(X = iﬁ(X“) X

.
c =3 fix?)- X7
i=1

and their commitment [C(s)],, [C'(s)], . (€G]
Ty 1
_—

Samples evaluation challenges x,x’ € F

Computes fi(x) = y; and f/(x) = y/

Yoo oo Yo Yas -V,
S

18/31

A Verifier-Friendly PCS: ¢

The Prover P(F, fy, . . ., fn, ,f{. R ,f;z) The Verifier V(F)
VooV VsV,
.. Batching Round. ..
a Samples a batching challenge o« € F
-— |«
Compute the following;
a) The nq-roots of xS = {zq, . . ., znq } and the ny-roots ofx " = {Z-{ zéz}
_ ’ Loty _ Aot
b) The polynomials r € F<|5‘ [X] st C(zj) = r(z/) andr’ € TF<‘S/|[X] st C (z/) =[(z/)
o) The zerofiers Zg () =] (X — 2)and Zg, () =] X —2)
z€eS zes!
Compute the batching polynomial:
) =0 X —re
q(X) = + a
Z5(X) Zsr (X)
and its commitment [q(s)]4 [0(s)]
1

19/31

The Prover P(F, fy ""f”1’f§""'f:12)

The Verifier V(F)

Compute the reduced polynomial:
LX) = Zgs (CX) — r(y)) + & - ZsW(C' () — ' (1))
— Zsgr (v) - q(X)

and the commitment [W]y := [L(s)/(s — V)]

[9(s)
—_—

Samples a reduction challengey € F

Compute a), b) and c) as in P's batching round, obtaining

the sets S, S” and the polynomials r, r’, Zs, 21
computes [F(S)y = Zs/ () [ch + & - Zs0) [€'], = Zssr) - Wy
and ¥ = r(y) + a - r'(v)
Outputs accepts if:
e (W, [sh) = e ([FS)ly — [y +y - Wy, [11p)

rejecting otherwise.

20/31

c-shplonR: Complexity (*)

- Let¢; = (n;-d+ n; —1) Assume w.l.o.g. that ny > n, and that ¢; — |S| > ¢, — |Y].

Theorem 5 (Worst case c-shplon Complexity)
Letfi,....fo 15, fh, € F be of degree d — 1 such that any of them have zero
coefficients. The (ny, n,)-pols and (1,1)-openings version of the c-shplonk polynomial
commitment scheme has the following measures:

1. Proving Time: 3¢, + ¢, — 2|S| escalar multiplications over Gy.

2. Proof Size: 4 Gq-elements and (ny + n, + 4) F-elements.

3. Verification Time: 4 escalar multiplications over G4 and 2 pairings.

21/31

Table of Contents

Implementation Details and f££lonX ~

22/31

A Useful Observation

- The combine C: F_4[X]' — F_4[X] function is defined as follows:
t
Clfr, o f0) =D _filX) - X
i=1

- Letf,g,h € F4[X]. To obtain commit(gp, C) observe that computing f(X!) - X is a
“multiply-index-by-t" (except for zero) followed by “shift-index-by-i":

23/31

A Useful Observation

- The combine C: F_4[X]' — F_4[X] function is defined as follows:
t
Clfr, o f0) =D _filX) - X
i=1

- Letf,g,h € F4[X]. To obtain commit(gp, C) observe that computing f(X!) - X is a
“multiply-index-by-t" (except for zero) followed by “shift-index-by-i":

f(X3) = [fov 07 Ov f'l? 07 07 f27 07 07 ﬁn 0 0]
g(X3) X = [Oa Jdo, 07 07 g, 07 07 92, 07 Oa 9u 0]
hOG)- X2 =[0, 0, hy, O, O, h;, 0, 0, hy, 0, O hy]

23/31

A Useful Observation

- The combine C: F_4[X]' — F_4[X] function is defined as follows:
t
Clfr, o f0) =D _filX) - X
i=1

- Letf,g,h € F4[X]. To obtain commit(gp, C) observe that computing f(X!) - X is a
“multiply-index-by-t" (except for zero) followed by “shift-index-by-i":

f(X3) = [fov Ov Ov f'lv 07 07 f27 07 07 ﬁn 0 0]
g(X3) X = [Oa Jdo, 07 07 g, 07 07 92, 07 Oa Ja 0]
hOG)- X2 =[0, 0, hy, O, O, h;, 0, 0, hy, 0, O hy]

and moreover:
a) commit(C) = commit(f(X*)) + commit(g(X*)X) + commit(h(X*)X*) takes 15 scalar
multiplications and 2 additions.
b) commit(C) = commit(f(X°) + g(X*)X + h(X*)X*) takes 15 scalar multiplications.

c) commit(C) takes exactly dt G, scalar multiplications.
23/31

Verifier Field Inversions

- Say that the verifier needs to perform the inversion of xy,...,x, € F.

- Using Montgomery batch inversion we can convert the n inversions to 1(16.000 gas)
inversion and 3 - (n — 1) multiplications.

- Problem: The verifier still needs to perform 1 inversion.

24/31

Verifier Field Inversions

- Say that the verifier needs to perform the inversion of xy,...,x, € F.

- Using Montgomery batch inversion we can convert the n inversions to 1(16.000 gas)
inversion and 3 - (n — 1) multiplications.

- Problem: The verifier still needs to perform 1 inversion.

- Solution: Let the prover do it for you!

The Prover P(F) The Verifier V(F)
Samples the inversion
challenges x1,...,x, € F

X1y ooy Xn
Computes the inversion of:
X=X1+...-Xn
Denote it as X
X

Compute x and check x - X =1

Run batch inversion on x, X -

Zerofier Division i

- Let T=S0US;US, where:
So = ho<bd0>, S = h1<w1>, S, = hz<t«)2> U h3<¢d2>
where h>l = hlSTh = pl>2/2 — 5 pl2172 — 505 and wo, wr, wy, w are primitive roots of
unity.

- In Round 4, we should divide a polynomial f € F[X] of degree > |T| by the zerofier
over T:

7r(X) = [J(x-2)

zeT

- Naive polynomial long division would take (unparallelizable) O(|T|?) time. Let’s do it
better!

25/31

Zerofier Division ii

We start by noticing that:

Zr(X) = Zs, (X) - Z5,(X) - Zs,(X) = (X! = 3) - (X1 — 3) - (X1 — 5(1 4 X512 4 320).

Then, we (sequentially) proceed as follows:

1. Divide f by Zs, to obtain the polynomial go such that go(X) - Zs,(X) = f(X).
2. Divide qo by Zs, to obtain the polynomial g, such that g,(X) - Zs,(X) = go(X).
3. Split Zs, (X) = (X121 — 3(1 + w)XI%21/2 4 320) as the multiplication of the two inner
zerofiers (XI21/2 — 3) and (XI%1/2 — 30).
Then:
a) Divide gi by (X212 — 3) to obtain the polynomial g, s.t. ga(X) - (X212 — 3) = g1(X).
b) Divide g, by (X/*?!/2 — 3w) to obtain the polynomial gs s.t. gs(X) - (X212 — 3w) = G2(X).

The polynomial g; satisfies gs(X) - Zr(X) = f(X).

26/31

Division by X" — 3 (*) i

Lemma 6

Given a polynomial f(X) = fyX + - -- 4 fiX + fo € F[X] of degree d > m and a field
element 3, the quotient of the division f(X)/(X™ — B) is the polynomial:

q(X) := {fd XM f CX@=n-m + fa_(m—1) ~X(d_(m_1))_m} n
aF [(fdfm +fq-P) . x(d=m)=m S (fdf(mi]) +fd7(m—1) - B) . x(d=@m=1))—m i
+ [(fd72m +fd—m - B +fd ﬁz) o X(d—2m)—m 4.

+ (fa—Gm—1) + fa—m—1) * B+ fa—(m—ny - B7) - X@=C=D)=m| 4

27/31

Division by X™ — 3 (*) ii

- In words, g is a polynomial with the m leading coefficients equal to the m leading

coefficients of f; the following m coefficients are of the form f; 4 f; - 8, with j — i = m;
the following m coefficients are of the form fi + f; - B+ f. - 8%, withj—i=k—j=m;
and so on.

- For instance, if f(X) = S21°, fiX and m = 2, then:

q(X) = fioX® + foX' + (fo + FroB)X° + (7 + foB)C+
+ (fo + faB + foBX" + (fs + 28 + foB2)X+
+ (fa + foB + fa B2 + 1o)X + (fs + fsB + f18% + fo B2)X+
+ (2 + fuB + foB8° + fa8> + fr05")

- This division is 100% parallelizable.

28/31

Adding Zero-Knowledge (with Dummy Gates) i

- In PlonH, in the order for the protocol to be zero-knowledge, the authors add to the
witness polynomials a blinding polynomial b € F[X] as follows:

n
a(X) := b(X)Zu(X) + > _w; - Li(X).
i=1
- This strategy ends up defining polynomials with degree n + deg(b), which is
inefficient for practical scenarios in which n is a power of two.
- To avoid this issue, we instead sample by, b, € F and compute:

a(x) = f WiLi(X) + brLn_1(X) + baLn(X).

Notice that now a has degree lower than n.

29/31

Adding Zero-Knowledge (with Dummy Gates) ii

- However, for the permutation polynomial we do it in the standard way:

Z(X) := (b7X* + bgX + bo)Zn(X) + Li(X)

& / vv+ W+) (Woy + BRI + 7)) (Wonyj + BRyw +
+Z(w) ECRELS UNET R CANEY AR

2. W W+ 80" G+ 1) (Wasy + B (1+1) +) Wanss + B (20 +1) +)

- In £flonFK, every constraint adds an n factor to the prover time.

- If done with the dummy gates strategy, we would have needed to add the following
constraint:

Loa(X)(200) — 1) = 0

to ensure the correctness of the permutation.

|

30/31

fLlonE ~ and ZyperfflonE

Tradeoff between P and V running times in £flon%

15G12P ¢

7G12P ¢

Verifying Time

5G12P+

3G12P : : °
20n Gy 25n Gy 35n G4 100n G4

Proving Time T

Thank you for your attention!

ﬁ Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon.
Efficient polynomial commitment schemes for multiple points and polynomials.
Cryptology ePrint Archive, Report 2020/081, 2020.
https://eprint.iacr.org/2620/681.

[@ Ariel Gabizon and Zachary J. Williamson.
fflonk: a fast-fourier inspired verifier efficient version of PlonK.
Cryptology ePrint Archive, Report 2021/1167, 2021.
https://eprint.iacr.org/2621/1167

[§ Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou.
VRAM: Faster verifiable RAM with program-independent preprocessing.
In 2018 IEEE Symposium on Security and Privacy, pages 908-925. IEEE Computer
Society Press, May 2018.

31/31

https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2021/1167

	Why fflonK in the zkEVM?

