
fflonK for the Polygon zkEVM
Héctor Masip Ardevol

Joint work with Polygon zkEVM

April 4th 2023 - LisbonInformation Security Group (ISG),
Universitat Politècnica de Catalunya (UPC)



Table of Contents

Why fflonK in the zkEVM?

The PCS of fflonK: c-shplonK

Implementation Details and fflonK−

1/31



Which is the Finality of a zkEVM?

tx1,  tx2,  tx3, …, txn tx1,  tx2,  tx3, …, txn ...

Bob sends 0.2ETH 
to Alice

Execute the function 
sendToken(0x1A2C..., 27) 

on the SC MyToken

π

π

Transactions 
(tx1,  tx2,  tx3, …, txn)

are valid

2/31



Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree’s bound of polynomials: n = 223.

b) Constraints:
5. Number of AIR constraints: 631 (with degree’s bound of 3n).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field Fp with p = 264 − 232 + 1, this means that:

The (non-encoded) execution trace is around 86GB.
3/31



Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree’s bound of polynomials: n = 223.

b) Constraints:
5. Number of AIR constraints: 631 (with degree’s bound of 3n).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field Fp with p = 264 − 232 + 1, this means that:

The (non-encoded) execution trace is around 86GB.
3/31



Statistics of the Polygon zkEVM Circuit

Some interesting numbers for the circuit C attesting the validity of a batch (≈ 500
standard) of transactions:

a) Polynomials:
1. Total number of polynomials: 1276.
2. Number of witness polynomials: 1058.
3. Number of preprocessed polynomials: 218.
4. Degree’s bound of polynomials: n = 223.

b) Constraints:
5. Number of AIR constraints: 631 (with degree’s bound of 3n).
6. Number of inclusion constraints: 28.
7. Number of connection constraints: 2.
8. Number of multiset equality constraints: 18.

Working over the prime field Fp with p = 264 − 232 + 1, this means that:

The (non-encoded) execution trace is around 86GB.
3/31



SNARKs for the Polygon zkEVM

• To generate a SNARK for this gigantic circuit C we need a very fast prover.
• Since the proof will be verified on-chain, we have also required a small proof size
and a fast verifier.

• Solution: Compose a SNARK I that features a fast prover with another SNARK O that
boasts a small proof size and a fast verifier.

• We chose eSTARK1 (very fast prover, but long proof size) for I and fflonK (slow
prover, but constant proof size and verification time) for O.

eSTARK 
Prover P

fflonK 
Prover PπeSTARK πfflonK

1This proving system is precisely the STARK proving system with support for arguments.

4/31



SNARKs with Constant Proof Size and Verification Time

Scheme Universal TS CRS/SRS Size Proving Time Proof Size Ver. Time
Groth16 7 3m+ w G1 3m+ w− ℓ G1,m G2 2 G1, 1 G2 ℓ G1, 3 P
PlonK 3 3n G1, 2 G2 11n G1 7 G1, 7 F 16 G1, 2 P
fflonK 3 9n G1, 2 G2 35n G1 4 G1, 15 F 5 G1, 2 P

• m denotes the number of multiplication gates.
• w denotes the number of wires.
• n denotes the number of gates.
• ℓ denotes the number of public inputs (ℓ = 1 in our case).
• Gi denotes scalar multiplications in Gi.
• P denotes pairings.

5/31



SNARKs with Constant Proof Size and Verification Time

Scheme Universal TS CRS/SRS Size Proving Time Proof Size Ver. Time
Groth16 7 3m+ w G1 3m+ w− ℓ G1,m G2 2 G1, 1 G2 ≈ 232.000 gas
PlonK 3 3n G1, 2 G2 11n G1 7 G1, 7 F ≈ 285.000 gas
fflonK 3 9n G1, 2 G2 35n G1 4 G1, 15 F ≈ 185.000 gas

• m denotes the number of multiplication gates.
• w denotes the number of wires.
• n denotes the number of gates.
• ℓ denotes the number of public inputs (ℓ = 1 in our case).
• Gi denotes scalar multiplications in Gi.
• P denotes pairings.

6/31



Proof System Diagram

c12a
Prover

πc12a recursive1

Prover
πrec1

recursive2

Prover

c12a
Prover

πc12a recursive1

Prover

πrec1

c12a
Prover

πc12a recursive1

Prover

πrec1

recursive2

Prover
πrec2

Aggregation StageNormalization
Stage

Compression
Stage

Final Stage

recursivef

Prover
πrecf

SNARK
Stage

Final
Prover

πSNARK

πrec2

zkEVM
batch
Prover

πbatch

zkEVM
batch
Prover

πbatch

zkEVM
batch
Prover

πbatch

7/31



Table of Contents

Why fflonK in the zkEVM?

The PCS of fflonK: c-shplonK

Implementation Details and fflonK−

8/31



What is a Polynomial Commitment Scheme (PCS)? i

Given the polynomial family F = F<d[X] of polynomials of degree lower than d with
coefficients over a finite field F, a PCS works as follows:

The Prover P(F , f) The Verifier V(F)

commit(f) = comf comf

Samples an evaluation
challenge x ∈ F

x
Computes proof π that:

f(x) = y
y, π

Accepts or rejects

9/31



What is a Polynomial Commitment Scheme (PCS)? ii

Definition 1
A Polynomial Commitment Scheme (PCS) is a tuple (setup, commit,open) such that:

• setup(1λ) = gp. Outputs the public group parameters gp.
• commit(gp, f, r) = comf. Outputs a commitment to f ∈ F with2 r ∈ F.
• open(gp, f, x, y) is a (public coin) protocol between P and V such that:

1. P(gp, f, x, y) = π.
2. V(gp, comf, x, y, π) = accept/reject.

In open is turned non-interactive, then a PCS is a (zk-)SNARK for the statement:

“I know an f ∈ F such that f(x) = y and commit(gp, f, r) = comf.”

2The commitment scheme is statistically binding and computationally hiding, but r can be used to make it computationally binding and statistically hiding.

10/31



Example of PCS: KZG

setup(1λ): The setup algorithm works by sampling a random s ∈ F, computing
gp = ([1]1 , [s]1 , . . . ,

[
sd−1

]
1 , [1]2 , [s]2) and deleting s.

The Prover P(F , f) The Verifier V(F)

commit(gp, f, r) = f(s)G1 := [f(s)]1 [f(s)]1
Samples an evaluation challenge x ∈ F

x
Computes f(x) = y,

the polynomial q(X) = f(X)− y
X− x ,

and the proof π := [q(s)]1 . y, [q(s)]1
Outputs accepts if:
e
(
[q(s)]1 , [s]2 − [x]2

)
= e

(
[f(s)]1 − [y]1 , [1]2

)
,

rejecting otherwise.
11/31



Properties of KZG

• The algorithm setup(1λ) requires to be trusted on deleting s.
• P runs in O(d) since it computes:

a) The MSM f(s)G1 = f0 · [1]1 + f1 · [s]1 + · · ·+ fd−1 · [sd−1]1.
b) The division q(X) = (f(X)− y)/(X− x).
c) The MSM q(s)G1 = q0 · [1]1 + q1 · [s]1 + · · ·+ qd−2 · [sd−2]1.

• The proof π consists of a single G1-element.
• V runs in O(1) time since it computes 2 pairings.
• It can be made zero-knowledge by masking f with r [ZGK+18].
• Direct generalizations: batch openings, multiple polynomials and both.

12/31



Simple KZG Generalizations

Batch Openings: Open f at x1, . . . , xm.

• Compute the polynomial r ∈ F<m[X] s.t. r(xj) = f(xj).
• Compute the quotient q(X) = (f(X)− r(X))/

∏m
j=1(X− xj).

• Verifying q is a polynomial implies f(xj) = yj, for j ∈ [m].

Multiple Polynomials: Open f1, . . . , fn at x.

• Compute the quotient qi(X) = (fi(X)− yi)/(X− x) for each i ∈ [n].
• Mix all the resulting quotients with a random linear combination q.
• Verifying q is a polynomial implies each qi is a polynomial, for i ∈ [n].

13/31



Simple KZG Generalizations

Batch Openings: Open f at x1, . . . , xm.

• Compute the polynomial r ∈ F<m[X] s.t. r(xj) = f(xj).
• Compute the quotient q(X) = (f(X)− r(X))/

∏m
j=1(X− xj).

• Verifying q is a polynomial implies f(xj) = yj, for j ∈ [m].

Multiple Polynomials: Open f1, . . . , fn at x.

• Compute the quotient qi(X) = (fi(X)− yi)/(X− x) for each i ∈ [n].
• Mix all the resulting quotients with a random linear combination q.
• Verifying q is a polynomial implies each qi is a polynomial, for i ∈ [n].

13/31



Generalization: Batch Openings and Multiple Polynomials (PlonKVersion) (*)
The Prover P(F, f1, . . . , fn1 , f

′
1, . . . , f

′
n2

) The Verifier V(F)

commit(gp, fi, ri) =
[
fi(s)

]
1 , for i ∈ [n1 ]

commit(gp, f′i , r
′
i ) =

[
f′i (s)

]
1
, for i ∈ [n2 ]

[f1(s)]1, . . . , [fn1 (s)]1

[f′1 (s)]1, . . . , [f
′
n2

(s)]1
Samples evaluation challenges x, x′ ∈ F

x, x′

Computes fi(x) = yi and f
′
i (x

′) = y′i

the polynomials:

q(X) =

n1∑
i=1

α
i−1 ·

fi(X) − yi
X − x

q′(X) =

n2∑
i=1

(α′)i−1 ·
f′i (X) − y′i
X − x′

and the proofs π = [q(s)]1 , π
′ =

[
q′(s)

]
1 y1, . . . , yn1 , [q(s)]1

y′1, . . . , y
′
n2

,
[
q′(s)

]
1

Computes [F(s)]1 =

n1∑
i=1

α
i−1 · [fi(s)]1 + r ·

n2∑
i=1

(α′)i−1 · [f′i (s)]1

and Y =

n1∑
i=1

α
i−1 · yi + r ·

n2∑
i=1

(α′)i−1 · y′i

Outputs accepts if:

e
(
[q(s)]1 + r ·

[
q′(s)

]′
1
, [s]2

)
= e

(
[F(s)]1 − [Y]1 + x · [q(s)]1 + r · x ·

[
q′(s)

]
1
, [1]2

)
rejecting otherwise. 14/31



PlonKKZG: Complexity (*)

Theorem 2 (Worst case KZG Complexity)
Let f1, . . . , fn1 , f′1, . . . , f′n2 ∈ F be of degree d− 1 such that any of them have zero
coefficients. The (n1,n2)-pols and (1, 1)-openings version of the KZG polynomial
commitment scheme has the following measures:

1. Proving Time: (n1 + n2 + 2)d− 2 escalar multiplications over G1.
2. Proof Size: (n1 + n2 + 2) G1-elements and (n1 + n2 + 2) F-elements.
3. Verification Time: (n1 + n2 + 2) escalar multiplications over G1 and 2 pairings.

• Problem: The verification complexity is dominated by the scalar multiplications
performed over the G1-elements in the proof.

• Solution: Reduce G1-elements in the proof.

15/31



Some Previous Results i

• Claim 1: In general, f(xi) = yi for i ∈ [n] if and only if q(X) = (f(X)− r(X))/ZS(X) is a
polynomial of degree deg(f)− |S|.

• Claim 2: Even more general, f(xi) = yi and f′(x′i) = y′i for i ∈ [n] if and only if
q(X) = (f(X)− r(X))/ZS(X) + α · (f′(X)− r′(X))/ZS′(X) is a polynomial of degree
d = max{deg(f)− |S|,deg(f′)− |S′|}, where α ∈ F is a uniformly sampled value.

Lemma 3 (shplonK [BDFG20])
f(xi) = yi and f′(x′i) = y′i for i ∈ [n] if and only if the following polynomial is of degree d:

L(X) = ZS′(y)(f(X)− r(y)) + α · ZS(y)(f′(X)− r′(y))− ZSS′(y) · q(X)
X− y

Put simply: Validating the |S|+ |S′| openings of q is equivalent to validating the opening
at 0 of L (i.e., the verifier complexity does not grow with the number of openings).

16/31



Some Previous Results ii

• The combine C : F<d[X]t → F<dt[X] function is defined as follows:

C(f1, . . . , ft) :=
t∑
i=1

fi(Xt) · Xi−1.

Lemma 4 (c-shplonK [GW21])
Opening f1, . . . , ft ∈ F[X] at x ∈ F is the equivalent to opening C at the t-roots of x, that is,
the t solutions of:

zt = x (mod p). (1)

In fact, if z ∈ F is a solution of (1), then so are z · ωit, for i ∈ [t].

17/31



A Verifier-Friendly PCS: c-shplonK i

The Prover P(F, f1, . . . , fn1 , f
′
1, . . . , f

′
n2
) The Verifier V(F)

Compute the polynomial combinations:

C(X) =
n1∑
i=1

fi(Xn1 ) · Xi−1

C′(X) =
n2∑
i=1

f′i (X
n2 ) · Xi−1

and their commitment [C(s)]1 ,
[
C′(s)

]
1

[C(s)]1, [C′(s)]1
Samples evaluation challenges x, x′ ∈ F

x, x′

Computes fi(x) = yi and f′i (x
′) = y′i

y1, . . . , yn1 , y
′
1, . . . , y

′
n2

18/31



A Verifier-Friendly PCS: c-shplonK ii

The Prover P(F, f1, . . . , fn1 , f
′
1, . . . , f

′
n2

) The Verifier V(F)

y1, . . . , yn1 , y
′
1, . . . , y

′
n2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Batching Round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Samples a batching challenge α ∈ Fα
Compute the following:

a) The n1-roots of x S = {z1, . . . , zn1} and the n2-roots of x
′ S′ = {z′1, . . . , z

′
n2

}

b) The polynomials r ∈ F<|S| [X] s.t. C(zj) = r(zj) and r
′ ∈ F

<|S′| [X] s.t. C
′(z′j ) = r′(z′j )

c) The zerofiers ZS(X) =
∏
z∈S

(X − z) and ZS′ (X) =
∏
z∈S′

(X − z)

Compute the batching polynomial:

q(X) =
C(X) − r(X)

ZS(X)
+ α

C′(X) − r′(X)

ZS′ (X)

and its commitment [q(s)]1 [q(s)]1

19/31



A Verifier-Friendly PCS: c-shplonK iii
The Prover P(F, f1, . . . , fn1 , f

′
1, . . . , f

′
n2

) The Verifier V(F)

[q(s)]1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reduction Round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Samples a reduction challenge y ∈ Fy
Compute the reduced polynomial:
L(X) = ZS′ (y)(C(X) − r(y)) + α · ZS(y)(C

′(X) − r′(y))

− ZSS′ (y) · q(X)

and the commitment [W]1 := [L(s)/(s − y)]1 [W]1
Compute a), b) and c) as inP ’s batching round, obtaining

the sets S, S′ and the polynomials r, r′, Zs, ZS′

Computes [F(s)]1 = ZS′ (y) [C]1 + α · ZS(y)
[
C′

]
1
− ZSS′ (y) · [W]1

and Y = r(y) + α · r′(y)

Outputs accepts if:

e
(
[W]1 , [s]2

)
= e

(
[F(s)]1 − [Y]1 + y · [W]1 , [1]2

)
rejecting otherwise.

20/31



c-shplonK: Complexity (*)

• Let ci = (ni · d+ ni − 1) .Assume w.l.o.g. that n1 > n2 and that c1 − |S| > c2 − |S′|.

Theorem 5 (Worst case c-shplonK Complexity)
Let f1, . . . , fn1 , f′1, . . . , f′n2 ∈ F be of degree d− 1 such that any of them have zero
coefficients. The (n1,n2)-pols and (1, 1)-openings version of the c-shplonK polynomial
commitment scheme has the following measures:

1. Proving Time: 3c1 + c2 − 2|S| escalar multiplications over G1.
2. Proof Size: 4 G1-elements and (n1 + n2 + 4) F-elements.
3. Verification Time: 4 escalar multiplications over G1 and 2 pairings.

21/31



Table of Contents

Why fflonK in the zkEVM?

The PCS of fflonK: c-shplonK

Implementation Details and fflonK−

22/31



A Useful Observation

• The combine C : F<d[X]t → F<dt[X] function is defined as follows:

C(f1, . . . , ft) :=
t∑
i=1

fi(Xt) · Xi−1.

• Let f,g,h ∈ F<4[X]. To obtain commit(gp, C) observe that computing f(Xt) · Xi is a
“multiply-index-by-t” (except for zero) followed by “shift-index-by-i”:

f(X3) = [ f0, 0, 0, f1, 0, 0, f2, 0, 0, f4, 0 0 ]

g(X3) · X = [ 0, g0, 0, 0, g1, 0, 0, g2, 0, 0, g4 0 ]

h(X3) · X2 = [ 0, 0, h0, 0, 0, h1, 0, 0, h2, 0, 0 h4 ]

and moreover:
a) commit(C) = commit(f(X3)) + commit(g(X3)X) + commit(h(X3)X2) takes 15 scalar

multiplications and 2 additions.
b) commit(C) = commit(f(X3) + g(X3)X+ h(X3)X2) takes 15 scalar multiplications.

c) commit(C) takes exactly dt G1 scalar multiplications.
23/31



A Useful Observation

• The combine C : F<d[X]t → F<dt[X] function is defined as follows:

C(f1, . . . , ft) :=
t∑
i=1

fi(Xt) · Xi−1.

• Let f,g,h ∈ F<4[X]. To obtain commit(gp, C) observe that computing f(Xt) · Xi is a
“multiply-index-by-t” (except for zero) followed by “shift-index-by-i”:

f(X3) = [ f0, 0, 0, f1, 0, 0, f2, 0, 0, f4, 0 0 ]

g(X3) · X = [ 0, g0, 0, 0, g1, 0, 0, g2, 0, 0, g4 0 ]

h(X3) · X2 = [ 0, 0, h0, 0, 0, h1, 0, 0, h2, 0, 0 h4 ]

and moreover:
a) commit(C) = commit(f(X3)) + commit(g(X3)X) + commit(h(X3)X2) takes 15 scalar

multiplications and 2 additions.
b) commit(C) = commit(f(X3) + g(X3)X+ h(X3)X2) takes 15 scalar multiplications.

c) commit(C) takes exactly dt G1 scalar multiplications.
23/31



A Useful Observation

• The combine C : F<d[X]t → F<dt[X] function is defined as follows:

C(f1, . . . , ft) :=
t∑
i=1

fi(Xt) · Xi−1.

• Let f,g,h ∈ F<4[X]. To obtain commit(gp, C) observe that computing f(Xt) · Xi is a
“multiply-index-by-t” (except for zero) followed by “shift-index-by-i”:

f(X3) = [ f0, 0, 0, f1, 0, 0, f2, 0, 0, f4, 0 0 ]

g(X3) · X = [ 0, g0, 0, 0, g1, 0, 0, g2, 0, 0, g4 0 ]

h(X3) · X2 = [ 0, 0, h0, 0, 0, h1, 0, 0, h2, 0, 0 h4 ]

and moreover:
a) commit(C) = commit(f(X3)) + commit(g(X3)X) + commit(h(X3)X2) takes 15 scalar

multiplications and 2 additions.
b) commit(C) = commit(f(X3) + g(X3)X+ h(X3)X2) takes 15 scalar multiplications.

c) commit(C) takes exactly dt G1 scalar multiplications.
23/31



Verifier Field Inversions

• Say that the verifier needs to perform the inversion of x1, . . . , xn ∈ F.
• Using Montgomery batch inversion we can convert the n inversions to 1 (16.000 gas)
inversion and 3 · (n− 1) multiplications.

• Problem: The verifier still needs to perform 1 inversion.
• Solution: Let the prover do it for you!

The Prover P(F) The Verifier V(F)
Samples the inversion
challenges x1, . . . , xn ∈ F

x1, . . . , xn
Computes the inversion of:

x = x1 · . . . · xn
Denote it as x̃

x̃
Compute x and check x · x̃ = 1
Run batch inversion on x, x̃ 24/31



Verifier Field Inversions

• Say that the verifier needs to perform the inversion of x1, . . . , xn ∈ F.
• Using Montgomery batch inversion we can convert the n inversions to 1 (16.000 gas)
inversion and 3 · (n− 1) multiplications.

• Problem: The verifier still needs to perform 1 inversion.
• Solution: Let the prover do it for you!

The Prover P(F) The Verifier V(F)
Samples the inversion
challenges x1, . . . , xn ∈ F

x1, . . . , xn
Computes the inversion of:

x = x1 · . . . · xn
Denote it as x̃

x̃
Compute x and check x · x̃ = 1
Run batch inversion on x, x̃ 24/31



Zerofier Division i

• Let T = S0 ∪ S1 ∪ S2 where:

S0 = h0⟨ω0⟩, S1 = h1⟨ω1⟩, S2 = h2⟨ω2⟩ ∪ h3⟨ω2⟩

where h|S0|0 = h|S1|1 = h|S2|/22 = z, h|S2|/23 = zω and ω0, ω1, ω2, ω are primitive roots of
unity.

• In Round 4, we should divide a polynomial f ∈ F[X] of degree ≥ |T| by the zerofier
over T:

ZT(X) :=
∏
z∈T

(X− z)

• Naive polynomial long division would take (unparallelizable) O(|T|2) time. Let’s do it
better!

25/31



Zerofier Division ii

We start by noticing that:

ZT(X) = ZS0(X) · ZS1(X) · ZS2(X) = (X|S0| − z) · (X|S1| − z) · (X|S2| − z(1+ ω)X|S2|/2 + z2ω).

Then, we (sequentially) proceed as follows:

1. Divide f by ZS0 to obtain the polynomial q0 such that q0(X) · ZS0(X) = f(X).
2. Divide q0 by ZS1 to obtain the polynomial q1 such that q1(X) · ZS1(X) = q0(X).
3. Split ZS2(X) = (X|S2| − z(1+ ω)X|S2|/2 + z2ω) as the multiplication of the two inner
zerofiers (X|S2|/2 − z) and (X|S2|/2 − zω).
Then:
a) Divide q1 by (X|S2|/2 − z) to obtain the polynomial q2 s.t. q2(X) · (X|S2|/2 − z) = q1(X).
b) Divide q2 by (X|S2|/2 − zω) to obtain the polynomial q3 s.t. q3(X) · (X|S2|/2 − zω) = q2(X).

The polynomial q3 satisfies q3(X) · ZT(X) = f(X).

26/31



Division by Xm − β (*) i

Lemma 6
Given a polynomial f(X) = fdXd + · · ·+ f1X+ f0 ∈ F[X] of degree d ≥ m and a field
element β, the quotient of the division f(X)/(Xm − β) is the polynomial:

q(X) :=
[
fd · Xd−m + fd−1 · X(d−1)−m + · · ·+ fd−(m−1) · X(d−(m−1))−m

]
+

+
[
(fd−m + fd · β) · X(d−m)−m + · · ·+ (fd−(2m−1) + fd−(m−1) · β) · X(d−(2m−1))−m

]
+

+
[
(fd−2m + fd−m · β + fd · β2) · X(d−2m)−m + . . .

+ (fd−(3m−1) + fd−(2m−1) · β + fd−(m−1) · β2) · X(d−(3m−1))−m
]
+ . . .

27/31



Division by Xm − β (*) ii

• In words, q is a polynomial with the m leading coefficients equal to the m leading
coefficients of f; the following m coefficients are of the form fi + fj · β, with j− i = m;
the following m coefficients are of the form fi + fj · β + fk · β2, with j− i = k− j = m;
and so on.

• For instance, if f(X) =
∑10

i=0 fiXi and m = 2, then:

q(X) := f10X8 + f9X7 + (f8 + f10β)X6 + (f7 + f9β)X5+
+ (f6 + f8β + f10β2)X4 + (f5 + f7β + f9β2)X3+
+ (f4 + f6β + f8β2 + f10β3)X2 + (f3 + f5β + f7β2 + f9β3)X+
+ (f2 + f4β + f6β2 + f8β3 + f10β4)

• This division is 100% parallelizable.

28/31



Adding Zero-Knowledge (with Dummy Gates) i

• In PlonK, in the order for the protocol to be zero-knowledge, the authors add to the
witness polynomials a blinding polynomial b ∈ F[X] as follows:

a(X) := b(X)ZH(X) +
n∑
i=1

wi · Li(X).

• This strategy ends up defining polynomials with degree n+ deg(b), which is
inefficient for practical scenarios in which n is a power of two.

• To avoid this issue, we instead sample b1,b2 ∈ F and compute:

a(X) :=
n−2∑
i=1

wiLi(X) + b1Ln−1(X) + b2Ln(X).

Notice that now a has degree lower than n.

29/31



Adding Zero-Knowledge (with Dummy Gates) ii

• However, for the permutation polynomial we do it in the standard way:

z(X) := (b7X2 + b8X+ b9)ZH(X) + L1(X)

+
n1∑
i=1

Li+1(X) i∏
j=1

(wj + βωj + γ)(wn+j + βk1ωj + γ)(w2n+j + βk2ωj + γ)

(wj + βσ∗(j) + γ)(wn+j + βσ∗(n+ j) + γ)(w2n+j + βσ∗(2n+ j) + γ)


• In fflonK, every constraint adds an n factor to the prover time.
• If done with the dummy gates strategy, we would have needed to add the following
constraint:

Ln−1(X)(z(X)− 1) = 0

to ensure the correctness of the permutation.

30/31



fflonK− and HyperfflonK

20n G1 25n G1 35n G1 100n G1
3 G1 2 P

5 G1 2 P

7 G1 2 P

15 G1 2 P

Proving Time

Ve
rif
yi
ng

Ti
m
e

Tradeoff between P and V running times in fflonK

31/31



Thank you for your attention!

31/31



Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon.
Efficient polynomial commitment schemes for multiple points and polynomials.
Cryptology ePrint Archive, Report 2020/081, 2020.
https://eprint.iacr.org/2020/081.
Ariel Gabizon and Zachary J. Williamson.
fflonk: a fast-fourier inspired verifier efficient version of PlonK.
Cryptology ePrint Archive, Report 2021/1167, 2021.
https://eprint.iacr.org/2021/1167.
Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou.
vRAM: Faster verifiable RAM with program-independent preprocessing.
In 2018 IEEE Symposium on Security and Privacy, pages 908–925. IEEE Computer
Society Press, May 2018.

31/31

https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2021/1167

	Why fflonK in the zkEVM?

